人工智能很难吗?人工智能可以自学吗?
-
不难的,人工智能其那就是很不错的,零基础就能进行学习的
人工智能
就业方向:科学研究,工程开发。计算机方向。软件工程。应用数学。电气自动化。通信。机械制造
人工智能可以说是一门高尖端学科,属于社会科学和自然科学的交叉,涉及了数学、心理学、神经生理学、信息论、计算机科学、哲学和认知科学、不定性论以及控制论。研究范畴包括自然语言处理、机器学习、神经网络、模式识别、智能搜索等。应用领域包括机器翻译、语言和图像理解、自动程序设计、专家系统等。2年前 -
51CTO数字化人才来回答这个问题:
目前,人工智能专业的学习内容课程主要包括:机器学习、人工智能导论(搜索方法等),图像识别、生物进化理论、自然语言处理、语义网、博弈论等。
所需的基础课程主要是信号处理、线性代数、微积分和编程(有数据结构基础)。
从专业的角度来看,机器学习、图像识别和自然语言处理都是大方向,只要你精通其中的一个,你就已经非常强大了。所以不要看太多的内容,有些你只需要掌握,你需要选择一个方向来深入学习。事实上,严格来说,人工智能不难学,但不容易学。它需要一定的数学基础和一段时间的积累。2年前 -
人工智能专业是一个比较好学的专业,课程难度不大,同时该专业还是一个很不错的专业,前景很好,中国正在产业升级,工业机器人和人工智能方面会是强烈的热点,以后很多东西都是人工智能了。我是桂林电子科技大学18级学生,我有一个认识的学弟就是人工智能专业的,我们学校是2020年才有人工智能这个专业的,下面我来具体介绍一下这个专业吧。01——个人感受我认为人工智能是未来的重要趋势之一。随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能这个专业前景非常广阔,所以说这个专业是很好的选择。还有,我觉得这个专业适合所有对人工智能有兴趣的同学去选择,该专业的课程难度不是很高,不过也不能随便摆烂,也得认真去学。
说到学习这个专业的首选那肯定是清华大学,其次是北京大学、国防科技大学、浙江大学和哈尔滨工业大学等。如果你真的对人工智能有着浓厚的兴趣,那么选择这个专业不会有错的。
02——专业介绍人工智能是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学,也是计算机科学的一个分支。它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。03——主修课程人工智能专业的核心课程有:专业导论、人工智能数学基础、线性代数 A、概率论与数理统计、程序设计与问题求解、电路与电子技术基础、面向对象编程、算法及数据结构、人工智能基础、数据科学导论、计算机组成原理、机器学习、信息论、机器人学概论、数字信号处理、模式识别、自然语言处理、现代控制理论等。我们在学习中需要注意的是:要认真学习智能的基础理论、基本方法和基本技能,掌握相关应用领域基础知识。还需要具有系统的计算思维和数据思维,具有创新创业意识和国际视野,具有良好的社会人文素养、职业道德和团队精神。04——就业前景人工智能专业就业方向主要包括科研机构(机器人研究所等)、软硬件开发人员、高校讲师等。在国内的话就业前景是比较好的,国内产业升级,IT行业的转型工业和机器人和智能机器人以及可穿戴设备的研发将来都是强烈的热点。人工智能目前是一个快速增长的领域,人才需求量大,相比于其他技术岗位,竞争度偏低,薪资相对较高,因此,趁着这个机遇,人工智能专业是一个很好的选择。05——小结人工智能这个专业不难学,但是大家也不能太随意,不然也会挂科的哟。并且人工智能专业相当的不错,未来必定是一个人工智能的世界,掌握了人工智能技术,就是一笔不可描述的财富。人工智能不仅能带动国家的发展,还能够方便世界上所有的人,所以,相信自己的感觉,对人工智能感兴趣的同学,来选择这个专业肯定没错的。2年前 -
人工智能学起来还是蛮有挑战的,不是那么容易!
人工智能相关专业比计算机专业要更有发展前景,人工智能,是一个以计算机科学为基础,由计算机、数学、哲学等多学科交叉融合的交叉学科。
近些年才刚刚在国内高校设立人工智能学院,开设的人工智能相关专业比如:智能科学与技术、数据科学与大数据专业。具体学习的课程各个学校会有不同,大概包括这些课程3个方向:
-
Ø 计算机相关:Linux操作系统、Java语言编程、数据库原理与应用、数据结构、数据挖掘与数据分析
-
Ø 数学及统计类课程:高等数学、线性代数、概率论、数理统计
-
Ø AI相关:机器人、语言识别、图像识别、自然语言处理、人脸识别,语音识别,智能算法推荐、深度学习、知识图谱、计算机视觉
就业前景如何呢?
数据科学与大数据技术与人工智能专业不仅有着明朗的就业前景,在就业岗位的薪资待遇上有着无法比拟的就业优势。基本薪酬,薪资水平、就业满意度都优于全国平均水平的专业。
3年前 -
-
人工智能当然不好学,因为非常高科技,但是如果学出来以后不但好就业而且还会有非常好的发展前景。
人工智能专业好学吗
人工智能专业对于数学基础不好的人可能会比较难学的。因为需要学编程,而且学的东西比较繁杂,从认知与神经科学、人工智能伦理到人工智能平台与工具都要学。但学得好,就业前景也不错。
虽然一些中国高校开设了相关课程,但总体上缺乏人工智能的基础教学能力,高校在独自培养具有动手能力的应用型人才上有所欠缺。
人工智能极富挑战性
从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。
人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。3年前 -
有一定难度,但人工智能方向是当下热门。假如自己现在没有人工智能方向的基础,可以了解人工智能行业当中比较热门的课程具体内容,了解清楚以后感兴趣就可以深入学习。因为每个人对知识的看法程度是不一样的,相比于想,付出行动才能知道适合自己的学习方式和感兴趣的方法。
但假如是工作转行,可以充分利用自己的工作经历和能力,让它成为加分项,以此为突破转向人工智能,也是一种不错的方式。
若帮助到您,求采纳~
3年前 -
当然可以自学。人工智能作为新时代科学飞速发展的产物之一,他的出现极大的便利了人们的生活,提高了人们对生活的体验。作为新兴的产业之一,会有很多小伙伴对其产生浓厚的兴趣,那么今天就让我们来讲讲如何学习人工智能,顺便分享几个学习人工智能的网站以供大家参考。
首先,人工智能属于计算机的一个分支,他是科技发展的重要产物,同样也是科技强大的体现。如果决定想要学习人工智能,当然不论是学任何东西。第一步就是要先了解你所要学习的具体是什么东西。就拿人工智能来举例,我们要先了解这一领域以及一些相关的基础知识。
一、人工智能是什么?
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。当我们在了解了基础的知识后我们还要对其进行下一步定义,就是我们为什么要去学习这项专业也就是我们要拿他去干什么?也就是明确目的性。
人工智能
你的目的是什么?是想要做基础的学术研究、比较感兴趣简单的进行了解还是说当成一个具体的就业方向,然后想明白这个问题我们再去根据他来进行有重点地去学习这项专业。像人工智能他的方向可能会有很多例如:机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。
选择相关的带着目的地去进行学习,这样是最有效率的。
好了,接下来由我来分享几个有关学习人工智能的网站
网站一:美国人工智能协会(网址: http://www.aaai.org/ )
美国人工智能协会官网
作为美国一个非盈利性的科学社团组织,主要致力于让机器产生智慧思考和智能行为的研究。此外,提升公众对人工智能的理解,对人工智能实践人员的教学和培训,为人工智能领域的研究者和投资者提供指导等也都是AAAI的实践内容。
网站二:智能代理家园(Agentland 网址: http://www.agentland.com/ )
智能代理家园(官网
智能代理是人工智能的应用领域之一,在中学人工智能课程教学中,适当介绍智能代理的基本概念和工作原理,并让学生与智能代理实例进行交互操作,能使其不但感受到智能代理的智慧和人性化服务,并且将由对智能代理的亲身体验,而产生对人工智能课程学习的浓厚兴趣。PS:可以当作入门学习的基础。
好了以上就是对人工智能的基本了解与自学方法,感兴趣的小伙伴可以去学习一下。
3年前 -
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。 2017年12月,人工智能入选“2017年度中国媒体十大流行语”。3年前 -
人工智能难字!
目前人工智能专业的学习内容有: 机器学习、人工智能导论(搜索法等)、图像识别、生物演化论、自然语言处理、语义网、博弈论等。 需要的前置课程主要有,信号处理,线性代数,微积分,还有编程(最好有数据结构基础)从上面的专业课程内容来看,需要掌握的人工智能相关的知识内容还是很多的,不过前置的课程在大学本科期间都有学习过,如信号处理,线性代数,微积分这些,如果你在学校期间,这部分的内容学习的不错,那么恭喜你了,你的基础不错。可以专心学习后面机器学习、深度学习相关的内容了。
从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,最终你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。
3年前 -
随着社会的发展,人工智能是未来大势所趋。我们也应该与时俱进不断地更新自己的知识。那我们该如何学习人工智能呢?因为人工智能在社会上并没有所谓的课程,我们可以向学习知识一样来自学人工智能。
机器学习
所谓的人工智能就是机器代替人类来做事情,比如说以前做蛋糕是人工打鸡蛋打发蛋白,耗时长和人力成本高,而现在我们只需要一个机器就可以代替我们做所有的事情,成本低,而且花费时间就短生产效率大大就提高了。这就需要,我们去学习如何操作机器去了解机器的每一个零件代表什么意思,看懂说明知道如何去控制机器。
深度学习
人工智能的出现,其实也是人类生产制造它的结果,而如何去生产制造他来达到我们想要的目的,这样就让我们去深度学习关于这个人工智能机器的知识,广泛应用知识来面对人工智能。因为人工智能是一个前所未有的东西,待开发的区域也还有很多,所以我们只能通过不断地学习来提高自己,从而提高我们的人工智能,这是一环扣一款环的缺一不可。
数据处理
人工智能的背后,其实是一堆数据。而不同的处理方式,会导致这些数据会有出入,我们要想具体达到人工智能去做某一种,目的就要对应的去做数据处理。而数据处理并不像我们打扫卫生扫地如此简单。他需要经过算术反复的试验来得出最终的数据,所以数据处理是非常严谨的,这也是我们学习人工智能的必要之一。
人工智能的学习建议从简单的开始,因为如果从最难的部分开始的话,这是一个我们未涉及过的领域。我们会有可能觉得非常的气馁甚至去放弃,所以就好像我们从一年级一直到我们大学逐步渐进。在过程中不断制定小目标,让自己慢慢地自学成才,慢慢地学懂人工智能。
3年前 -
1. 寻找一些免费的书籍。
Shival Gupta分享自己初学AI的经验时,强调了熟悉基本AI术语和方法的重要性。寻找一些免费的AI书籍作为自己学习人工智能的开始,是正确的做法。
Peter Norvig和Stuart J. Russell所著的《Artificial Intelligence: A Modern Approach》一书就很不错。本书不仅介绍了基本的人工智能概念和算法(专家系统、深度优先和广度优先搜索、知识表示等),而且还包括基础知识如贝叶斯推理,一阶逻辑,语言建模等。
对于那些对深度学习感兴趣的人, Ian Goodfellow、Yoshua Bengio和Aaron Courville 所写的《深度学习》(自适应计算和机器学习系列)一书是不错的选择。
此外,可以看看《Logic For Computer Science》这本免费书,它解释了计算机科学的数学逻辑,并强调了求解证明的算法方法。2.熟悉Python,(C / C ++)和数据结构。
人工智能从业者相信,任何主流语言和非主流语言都能应用于AI / ML。最大的区别在于库/工具的性能和可用性。
例如,C++的所有设置都优于Java或Python,并帮助开发人员最大化硬件的功能。另一方面,Python有一个非常好的FFI,并且经常与C或C++结合使用。与此同时,Octave / MATLAB、R、Python、C++、Java、R和其他一些语言都有高质量的库,如何使用取决于你想要做什么。
一般的共识是,必须熟悉一些流行的语言,如Python,它有一个很好的工具箱/库。
3年前 -
人工智能是比较好学的,因为这个专业是比较实心,比较时髦的,以后就业前景是非常好的,可以增加自己的实力3年前
-
不太好学,门槛比较高,人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
3年前 -
大家在学习一门新技术的时候,学习方式很重要,如果能够选择一个适合自己的方式去学习,那么学习效果也能事半功倍,再辅助以足够的练习,那么从这种层面来说学人工智能不难。3年前
-
工智能不难学,目前的人工智能还不能称的上真正意义的上的智能,因为目前都还是基于大数据驱动的机器学习,其实就是让计算机记住了大量的数据,还不具备最简单的推理、联想等能力。
所以学习人工智能的的突破点就比较明确了,就是学好机器学习就行了。
机器学习主要包括,神经网络计算、支持向量机、决策树、深度卷积神经网络、等。
学习这些可以看周志华的西瓜书入门,在此之前、你需要现有一定的高等数学和矩阵分析的数学基础,因为神经网络的训练过程就是梯度下降法,需要用到高等数学里的链式求导法则,还有一些矩阵运算的推导需要你有一些线性代数和矩阵分析的基础,比如机器学习里经常听到的hessian矩阵,就需要有矩阵求导的知识! 此外你还需要有一定的概率论、随机过程基础,比如 HMM隐马尔可夫算法就需要随机过程理论。4年前 -
首先,你的基础怎么样。很多时候,事实证明,有人天生就是学理科的料,他们的数学计算能力很强,逻辑思维很严谨,别人抓破脑袋也想不明白的高数、线性积分,在他们眼里就是小菜一碟。如果你在数学、逻辑等方面的基础很好,那就说明你天生就是干这行的人,叫老天爷赏饭吃,入门真的很快,随便碾压别人。
其次,你对人工智能是否真的感兴趣。兴趣是最好的老师,人工智能是比较深奥的领域,是一门极具挑战性的科学,要沉得下心来钻研,这时候能不能撑得下去,那就看你的兴趣和意志了。为什么兴趣这么重要?我给你说一个例子吧,大学的时候,我一个哥们,突然对滑冰感兴趣,可能是在某个时间在溜冰场遇到了喜欢的人吧。那一整个学期,他不仅自己拼命苦练,还看了各种教学视频,买了各种专业的设备,从一个菜鸡变成业余,再变成能花样滑冰。别人都在宿舍玩游戏的时候,他在滑冰;别人在睡觉的时候,他还在练。等我们在溜冰场看到他的时候,都震惊了,竟然能这么熟练,我们站都没站稳,还在反复摔到烂屁股,他已经在跟别人玩花样了。老实说,如果不是兴趣,我想不出有什么理由让他坚持了下来。
如果你在以上两个方面都很好,那人工智能肯定是手到擒来。三天打鱼两天晒网的人,真的就比不上会学习、懂学习、能沉下心的人。
4年前 -
人工智能当然不好学,因为非常高科技,但是如果学出来以后不但好就业而且还会有非常好的发展前景。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。
人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。4年前 -
并不容易
人工智能属于前沿科技,都不会特别容易,人工智能主要是机器学习,积极学习,包括理论实践两部分,理论部分对数学要求非常高,实践部分稍微简单一些,因为大多数人使用的方法已经有人写好了
需要你学会python
如果只是做做简单的应用,那么人工智能也不是太难4年前 -
人工智能需要你掌握Python语言,这样你学习人工智能就可以事半功倍,如果你的基础不太好,自学性又很差可以去专业学校去学习,有老师带你学习,只要你肯付出肯学习就一定能够学会的。5年前
-
假设你是零基础,如果有基础的,可以略过自己已经掌握的部分技术。
1、务实基础,学习高数和Python编程语言。
因为人工智能里面会设计很多数据、算法的问题,而这些算法又是数学推导出来,所以你要理解算法,就需要先学习一部分高数知识。
先将高等数学基础知识学透,从基础的数据分析、线性代数及矩阵等等入门,只有基础有了,才会层层积累,不能没有逻辑性的看一块学一块。
再就是学习python编程语言,Python具有丰富和强大的库,作为人工智能学习的基础编程语言是非常适合的。
2、阶段晋升,开始学习机器学习算法+实践演练。
掌握以上基础以后,就要开始学习完机器学习的算法,并通过案例实践来加深理解和掌握。还有很多机器学习的小案例等着你来挑战,前面掌握的好,后面当然轻松很多,步入深度学习
3、不断挑战,接触深度学习。
深度学习需要机器大量的经过标注的数据来训练模型,所以你的掌握一些数据挖掘和数据分析的技能,然后你再用来训练模式。在这里你可能会有疑问,据说深度学习,好像有很多神经网络,看着好复杂,编辑这些神经网络那不是太难了,你大可放心,谷歌、亚马逊、微软等大公司已经把这些神经网络模型封装在他们各自的框架里面了,你只需要调用就可以了。
4、不断实战,曾倩自己的实力经验。
实战是检验真理的唯一标准。当你掌握了基本的技术理论,就要开始多实践,不断验证自己的理论,更新自己的技术。如果有条件的话,可以从一个项目的前期数据挖掘,到中间模型训练,并做出一个有意思的原型,能把一整套的流程跑通,那么恭喜你,你已经具备一名人工智能初级工程师的水准了。6年前
