淹没在私募股权池中,私募股权绩效归因的困境

私募市场总体表现计算中最令人惊讶的是什么?

私人市场投资者、顾问、狂热者、批评者甚至学者对数学错误、严重不准确和代表性普遍存在“容忍”。

在传统资产类别中,投资专业人士在归因分析中高度关注每一“微米”的绩效差异。然而,对于私人市场资产来说,过度近似是当今的惯例。

私募股权绩效归因的困境

现金流的可变性使得私募市场资产的业绩归因更具挑战性:回报不是由稳定的基础资产基础产生的,因此不存在再投资或复利的可能性。

正如我之前写过的,今天的绩效归因工具包由指标组成——内部收益率 (IRR)、支付总价值 (TVPI)、公开市场等价物 (PME) 和各种 alpha,这些指标在单一指标上发挥作用资产水平充其量但不能一概而论。

那么,泛化实际上意味着什么呢?

可比性

用非数学术语来说,泛化允许进行有意义的比较。我们应该能够判断给定的 IRR 或 TVPI 客观上是否比另一个“更好”,它代表了更高的回报还是更低的风险。

给定两项可比较的投资,15% 的 IRR 是否优于 10%?虽然视错觉暗示确实如此,但实际上,如果没有更多数据,我们就无法给出准确的响应。我们需要有关投资时间和资本的信息。这意味着时间加权指标而不是当前使用的货币加权近似值。

如果 10% 的 IRR 是在较长一段时间内赚取的,那么 10% 的 IRR 可能会更可取,比如说四年,而 15% 的 IRR 则为两年。这导致 10% 的人的投资资本 (MOIC) 达到 1.4 倍,超过 15% 的人的 1.3 倍 MOIC。但我们仍然需要持续时间成分才能得出任何合理的结论。

根据内部收益率的叙述,早期收回的资金可以以相同的回报率进行再投资。但这只是一个假设。在固定收益中,提前付款通常被视为再投资风险。过去的回报并不能保证未来的结果。

但让我们更加麻烦,再扔一块石头吧。

1.4x MOIC 比 1.3x 更好吗?当然,对吧?事实上,这完全取决于实际部署的资本与承诺部署的资本。如果 1.4 倍 MOIC 是由仅为参考承诺 50% 的提取资本产生的,而 1.3 倍是根据 100% 提取的相同承诺产生的,则后者的表现优于前者。

基于这种逻辑,所有派生的 PME 和 alpha 计算都受到相同的概念限制。因此,所有货币加权的四分位数信息以及私募市场投资的排名都可能造成严重的数据失真。

可加性

用数学术语来说,泛化意味着可加性是任何稳健统计分析的先决条件。上面的例子表明,如果没有准确的可加性,我们就无法确定代表性平均值。

金融数学规则规定,平均利率只能通过复利实现。但 IRR 无法随着时间的推移而适当地复利。当 IRR 以年化或跨期衡量标准呈现时,或者从准确度的角度来看更糟糕(如自成立以来的回报),它们可能会严重歪曲实际回报。

但即使 IRR 可以像我们的 MOIC 示例中那样复合,在没有更多资本利用信息的情况下,MOIC 的性质也会阻止我们正确平均其绩效。

我们两个假设投资的平均 IRR 不是 12.5%,平均 MOIC 也不是真实平均回报的 1.35 倍。同样,在做出任何有意义的估计之前,我们需要久期成分和资本权重数据。

池化陷阱

在私募股权总回报计算中,粗略估计更为惊人。研究经常汇集现金流,将来自不同基金的现金流视为来自单一基金。这比我们之前的示例更扭曲数据。

处理价值多个基点的年化差异时,不考虑数学准确性或代表性。


汇集现金流

显示私募市场年化差异的图表

上表分别列出了不同规模和年份的三只基金的现金流量、汇集的现金流量以及汇集和加权的现金流量。也就是说,现金流量是按形式计算的,用各个基金的相对权重对各个现金流量进行加权。

9.14% 的汇总 IRR 不同于(数学上不正确的)单个基金的加权平均 IRR 6.95% 和 8.13% 的汇总加权 IRR。然而,业绩数字应该明确代表基金创造的价值。

从准确性角度来看,更糟糕的是,汇总数据以 10 年期回报率(或自成立以来到最新报告日期)的形式呈现。因此,即使采用更保守的汇集加权回报,自成立以来的假设表明,800 个汇集单位的投资资本将变为 (1+8.13%) ^10=2.18x,即 1,748 个单位。

自成立以来,汇集回报就造成了明显的脱节。投资于这三只基金的 800 单位资本“仅”产生了 1,160 单位资本,远低于自成立以来汇总回报所暗示的“印象”。

不合理的信心往往是自成立以来视野回归的结果。正如示例所示,它们产生了财富放大的错觉,在本例中放大了 1.5 倍。这有助于解释为什么营销文件显示太多 10 倍私人市场基准。

DaRC 救生衣

我收到的一些最好的建议是永远不要相信来自游泳池或大海的流量,或者只是聚合计算。多多保重。

为了防止准确的信息淹没在私募股权池中,久期调整资本回报率 (DaRC) 方法提供了必要的久期框架。它首先通过考虑现金流的时间来校正倍数,然后利用久期的可加性属性。

因此,合并倍数与实际现金流余额保持一致:1.45 倍。然后,在适当的净久期为 4.68 年的情况下,我们计算出可信的平均净时间加权 DaRC 回报率为 8.39%。

为了优化多元化投资组合的分配和风险管理,我们需要准确的业绩数据。但目前的私募市场指标往往达不到该基准。我们可以做得更好。

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/74019.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年8月29日 22:59
下一篇 2023年8月29日 23:09

相关推荐

  • 什么是 DRIP 投资策略?

    股息再投资计划,通常称为 DRIP,是一种投资策略,允许投资者在股息支付日将其现金股息再投资为基础证券的额外股份或部分股份。用外行的话来解释这种“再投资机制”,它非常类似于滚雪球下山——雪球(你的投资)随着它不断滚动(再投资)而变得更大(增长)。您可能需要向专业财务顾问寻求建议,看看这对您来说是否是一个好的策略。 DRIP的主要吸引力在于股息的自动再投资。当…

    2023年9月7日
    28300
  • 市场对波动性的预测有多准确?

    芝加哥期权交易所波动率指数 (VIX) 于 20 世纪 90 年代问世,旨在帮助投资者追踪未来市场的预期风险。芝加哥期权交易所的 VIX 的独特之处在于,它使用标准普尔 500 指数的 30 天期权来衡量交易员对波动性的预期。从本质上讲,它为我们提供了市场对股票波动性的预期。 但这一指标在实际基础上有多准确?何时会偏离市场?我们通过将 1990 年以来的全部…

    2024年9月3日
    5000
  • 固定收益展望:可控下降策略

    固定收益展望:控制下降的策略 我们预计债券收益率将逐渐下降——但这可能是一个坎坷的过程。以下七种策略可能有助于投资者利用这一机会。 9 月 18 日,美联储启动宽松周期,降息 50 个基点,这是 16 年来的最大降息幅度。这一举措使大多数主要央行都进入了宽松阶段,但并不能保证收益率平稳下降。例如:美联储降息后,10 年期美国国债收益率实际上上升了。虽然我们预…

    2024年11月9日
    3100
  • 北京大学金融时间序列分析讲义第15章: 线性时间序列案例学习「美国月失业率」

    失业率是每个国家、地区经济运行的重要指标。2011年,美国的季节调整后的月度失业率在9%左右。 本章对美国月失业率数据进行建模和预测,使用不带解释变量和带解释变量的两种方法,解释变量是周首次申请失业救济金人数信息。 数据来自Department of Labor, US Beareau of Labor Statistics。数据经过了季节调整。失业率为百分…

    2023年7月27日
    41300
  • 北京大学Julia语言入门讲义第18章: Julia程序效率介绍

    Julia的语言特点 Julia语言是一种历史很短的计算机语言,公开发布于2012年。其设计理念就是希望兼有Python、R、Matlab这样的动态语言的易用性,以及C、C++、Java这样的静态语言的运行速度。所以Julia很适合用来做统计和金融计算。 Julia语言的特点有: 动态语言; 使用基于LLVM的动态编译技术,可以动态生成高效的运行代码; 不需…

    2023年8月30日
    31600

发表回复

登录后才能评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部