规模因子对投资组合很重要

规模因素是提供长期溢价的股票风险因素之一。然而,最近,一些研究人员根据其性能与其他众所周知因素的比较,对其效用表示怀疑。例如,Ron Alquist、Ronen Israel 和 Tobias Moskowitz以及Noah Beck、Jason Hsu、Vitali Kalesnik 和 Helge Kostka认为,对于持续的规模溢价既没有强有力的经验证据也没有强有力的理论支持。

但大多数投资者应该质疑这些结论的相关性是有原因的。

 

Joel L. Horowitz、Tim Loughran 和 NE Savin的统计分析表明,小盘股相对于大盘股的单独表现较弱,如果考虑到市场因素,甚至可能消失。特别是,除了同期市场回报之外,用滞后市场回报增加自变量集会导致微不足道的规模溢价。

虽然具有边际统计意义,但这一结果对投资者几乎没有任何实际意义。事实上,滞后市场“因素”是一种人为构造,投资者无法将其持有在其投资组合中,因此仅具有假设的统计应用。因此,衡量这种不可投资因素的 alpha 没有经济意义。

对我们来说,更重要的问题是:规模因素是否会增加投资者投资组合的价值?

应从投资组合的角度评估因子绩效

确定一个因素是否为投资组合增加价值的最简单方法是比较包含和不包含该因素的投资组合的夏普比率。夏普比率越高,整个投资组合的风险调整后回报就越高。独立的因子溢价不会回答这个问题,因为它没有考虑因子的风险特征,即所考虑的因子与投资组合中其他因子之间的相关性。

此外,仅衡量市场因素的敞口并不能全面了解该因素将如何影响投资组合,因为它忽略了与其他因素的相关性。在回归中添加市场因素的滞后值并不能解决这个问题,并且还假设投资者的选择仅限于仅持有市场或持有市场和规模。

 

为了正确分析规模因素,我们必须在一组经济相关因素中评估其效用。将规模因素与经济上无意义或多余的因素一起检查几乎不会产生任何统计或经济见解。因此,为了确定规模是否增加价值并提高投资组合的夏普比率,我们需要将所有这些其他因素的风险整合到我们的分析中。

在之前发表在《贝塔投资策略杂志》上的工作中,Scientific Beta 研究人员 Mikheil Esakia、Felix Goltz、Ben Luyten 和 Marcel Sibbe 进行了多项测试,以确定规模因素是否确实提高了多因素投资者的夏普比率。下表中显示的结果表明它显然确实如此,并且与其他研究人员的发现一致。该图显示了投资者可以从具有市场、规模、价值、动量、低风险、高盈利和低投资因子的因子菜单中选择最大化夏普比率的因子权重,这些因子已被广泛使用在学术和实践研究中。

这是评估一个因素对投资组合的风险/回报特征的影响的直接方法。与这些权重的任何偏差都会降低夏普比率。规模因子在投资组合中的权重超过 9%,高于价值因子(2.9%),接近动量因子(11.4%)和低风险因子(11.7%)。


平均方差最优投资组合中的权重,1963 年 7 月至 2018 年 12 月

显示平均方差最优投资组合权重的图表,1963 年 7 月至 2018 年 12 月

在同一项研究中,研究人员还报告说,在分析期间,独立规模因素在菜单上的因素中回报率最低。动量和低风险的平均独立溢价约为三倍。然而,最优投资组合中动量和低风险因子的权重并不比规模因子高多少。

如何解释这些结果?最终,最佳因子权重不仅仅取决于回报。他们还依赖于风险属性,特别是因子波动率以及每个因子与市场因子以外的因子的相关性。考虑这些风险属性特别有用,因为我们可以相当可靠地衡量它们,而众所周知,预期回报很难估计。

规模因素在最优投资组合中的正权重表明,包括规模敞口可以改善多因素投资组合的风险/回报状况。尤其是规模因素对夏普比率的贡献,因为它与其他传统因素的相关性特别低,这使其成为投资组合的有效多元化因素。事实上,它的多元化收益如此强大,以至于即使几乎没有溢价,规模因子仍然是多因子投资组合的一个有价值的补充。

 

规模因素可能不会带来可观的回报,但它是对投资组合的宝贵补充

当考虑投资组合对市场因素以外的其他因素的敞口时,添加规模因素明显改善了投资组合的风险/回报特征。规模是其他传统因素的强大多元化因素,因此可以增加多因素投资组合的价值。不考虑动量、盈利能力和其他因素的分析对投资者没有多大用处。

最后,还有规模效应。其他方面的声明与各种学术资产定价模型相矛盾,这些模型显示规模因素增加了回报横截面的解释力。这些模型通过纳入市场以外的因素,为投资者提供了有意义的结论,并证实了规模因素对投资组合多元化和风险控制的重要贡献。

韭菜热线原创版权所有,发布者:弗里曼,转载请注明出处:https://www.9crx.com/72191.html

(0)
打赏
弗里曼的头像弗里曼管理团队
上一篇 2023年6月14日 23:31
下一篇 2023年6月15日 23:45

相关推荐

  • 关于量化筛选基金经理的三个维度,选择基金经理的量化指标

    评估投资经理是一项具有挑战性的工作。否则为什么资产所有者会花费如此多的时间和资源(通常是在顾问的帮助下)来进行经理人搜寻?正确的经理选择和评估需要彻底的尽职调查,但相对简单的问题可以作为潜在投资经理的有用的初始考察。 在开始与量化经理进行尽职调查之前,资产所有者应该向该经理询问三个基本问题。如果经理没有提供足够的答复,他们可能不值得进一步考虑。尽管我们的重点…

    2023年7月4日
    31400
  • 北京大学R语言教程(李东风)第31章: 使用infer包进行统计推断

    R的infer扩展包提供了与tidyverse系统习惯做法一致的进行假设检验的方法。 在进行理论推断时, 主要使用随机模拟方法进行计算, 也支持基于理论分布的方法。 这个包的当前版本(1.2.9001)还有一些错误, 不能用于较正式的研究问题。 以数据框(tibble)为输入, 用动词specify指定针对的变量, 用hypothesis指定假设检验(包括置…

    2023年11月21日
    47100
  • 如何在风险意识股票投资组合中捕捉人工智能创新

    如何在风险意识股票投资组合中捕捉人工智能创新 技术颠覆既创造了机遇,也带来了波动。但我们有办法在管理风险的同时抓住人工智能创新。人工智能革命的核心公司被广泛视为昂贵、快速增长的企业,通常不会被纳入防御性投资组合。然而,我们认为人工智能生态系统中的精选公司可以融入具有风险意识的股票配置,这种配置着眼于优质的长期增长来源和深思熟虑的投资组合构建策略。 寻求降低股…

    2024年5月31日
    13400
  • 北京大学金融时间序列分析讲义第8章: 指数平滑

    简单指数平滑 指数平滑最早是来自一种简单的预测方法:用历史数据的线性组合预测下一时间点的值,线性组合系数随距离变远而按负指数(几何级数)衰减: x̂ h(1)≈wxh+w2xh−1+⋯=∑j=1∞wjxh+1−j 其中0<w<1,w越小,距离远的历史观测对预测的贡献越小。 因为是加权平均,所以所有加权的和应该等于零,注意到 ∑j=1∞wj=w1−…

    2023年7月18日
    20700
  • 北京大学R语言教程(李东风)第40章: 随机模拟

    40.1 随机数 随机模拟是统计研究的重要方法, 另外许多现代统计计算方法(如MCMC)也是基于随机模拟的。 R中提供了多种不同概率分布的随机数函数, 可以批量地产生随机数。 一些R扩展包利用了随机模拟方法,如boot包进行bootstrap估计。 所谓随机数,实际是“伪随机数”, 是从一组起始值(称为种子), 按照某种递推算法向前递推得到的。 所…

    2023年11月29日
    27900
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部