因子投资组合与市值加权指标策略,可以缩小跟踪误差吗?

尽管在 2022 年短暂恢复正常,但自 2020 年 COVID-19 引发的市场崩盘以来,股票因子策略相对于市值加权指数经历了绩效挑战。虽然对这些挑战有很多解释,但我们这里的重点是另一个问题:

是否有可能保留因子方法进行股权投资的好处和经济合理的基础,同时使因子投资组合的表现与市值加权指标更紧密地保持一致?

 

在回答这个问题之前,让我们简要回顾一下市值加权指数的缺点。在市值加权指数中,市值较高的公司在指数中的权重较高。另一方面,规模较小的公司可能拥有最大的增长空间,但权重较低。投资上限加权指数策略固有的风险有三重。第一,随着权重最大的公司“均值恢复”到较低的价格水平,他们可能会遭受损失。其次,通过减持规模较小的公司,市值加权策略可能会阻止投资者从最具增长潜力的公司中真正受益。最后,市值加权指数策略相对集中于最大股票的一小部分。

相比之下,正确构建的股权因子策略将受到风险因素的驱动,这些风险因素已被证明可以在长期内奖励投资者。这些因素——价值动量、规模、盈利能力、投资和低波动性——已经被不同研究人员几十年来的经验验证,并具有清晰直观的经济原理。与上限加权指数和模仿其行为的产品相比,涉及所有六个因素的多因素投资组合通常更加多元化和波动性更低的投资工具。虽然后一个特征对因子投资组合有很好的作用,但正如我们所看到的,在某些市场环境中,股票因子投资组合的表现可能逊于市值加权策略。问题是:

什么是要做?

如下所示,没有必要在因子投资和市值加权绩效之间进行二元选择。虽然从长远来看,以批发方式倾向于上限加权基准可能不会让投资者受益,但有一个中间方法:继续投资于因子策略,但应用跟踪误差约束,以缩小上限加权和“无约束”之间的绩效差距” 给定时期内的因子投资组合。正如我们的分析所示,将后者的调整应用于因子投资组合无论从短期还是长期来看都有优点和缺点。

 

跟踪误差约束因子投资组合如何表现?

下图显示了标准六因子投资组合(其中每个因子具有相同的权重)与其跟踪误差 (TE) 约束变体之间的近期绩效差异。当我们应用 TE 约束时,该表表明因子组合与上限加权指数之间的绩效差距大幅缩小。然而,这些投资组合付出的代价是额外波动性约 100 个基点 (bps),以及下行保护恶化(以最大回撤衡量)。


具有跟踪误差约束的因子投资组合,
2022年12月31日至2023年6月30日

上限
加权
六因素
等权
六因素
等权
1% TE目标
六因素
等权重
2% TE 目标
返回 17.13% 6.04% 14.70% 12.38%
挥发性 14.44% 13.10% 14.05% 13.72%
夏普
比率
1.01 0.27 0.87 0.72
最大限度。回撤 7.43% 7.90% 7.51% 7.61%
相对
回报
-11.09% -2.43% -4.75%
跟踪
误差
4.65% 0.98% 1.95%
信息
不适用 不适用 不适用
最大限度。相对
回撤
10.04% 2.19% 4.29%

下表中 TE 控制的投资组合的行业构成显示,相对于标准多因子投资组合,科技行业的严重暴露不足显着下降。这可能并不令人意外。毕竟,较大的科技公司一直是市值加权工具相对于股权因子策略表现优异的主要驱动力之一。


截至 2023 年 6 月 30 日的行业分配

上限加权 六因素
等权
六因素
等权
1% TE目标
六因素
等权重
2% TE 目标
绝对重量 相对重量 绝对重量 相对重量 绝对重量 相对重量
活力 4.7% 6.3% 2.0% 5.3% 0.6% 5.9% 1.2%
基础
材料
2.3% 2.6% 0.3% 2.4% 0.0% 2.4% 0.1%
工业品 8.8% 7.4% -1.4% 8.3% -0.4% 7.9% -0.9%
周期性消费者 12.4% 11.7% -1.0% 12.0% -0.3% 11.7% -0.7%
非周期性
消费者
6.5% 11.2% 5.1% 7.4% 0.9% 8.3% 1.8%
金融 12.7% 13.1% 1.5% 12.9% 0.2% 13.1% 0.4%
医疗
保健
14.2% 17.7% 4.2% 14.8% 0.6% 15.4% 1.2%
科技 34.5% 21.5% -15.7% 31.7% -2.8% 28.9% -5.7%
电信 1.1% 2.0% 0.9% 1.3% 0.2% 1.6% 0.4%
公用事业 2.7% 6.6% 4.1% 3.8% 1.0% 4.8% 2.1%

在较长的衡量范围内,下图表明,控制 TE 会增加波动性并降低回报,从而损害长期风险调整后的业绩。信息比率和在各个方面跑赢市值加权指数的可能性也略有恶化。


长期风险调整后业绩,
1971年6月30日至2022年12月31日

上限加权 六因素
等权
默认
投资组合
标准投资组合
TE 1%
标准投资组合
TE 2%
周年
申报表
10.22% 13.10% 10.95% 11.63%

波动率
17.33% 15.53% 16.82% 16.38%
夏普比率 0.33 0.55 0.38 0.43
最大限度。
回撤
55.5% 50.9% 54.0% 53.5%
年度
相对
回报率
2.88% 0.72% 1.41%

跟踪
误差
4.20% 1.14% 2.21%
信息
0.69 0.63 0.64
最大限度。相对
回撤
20.1% 5.8% 10.7%
表现优异的
概率
(一年)
66.89% 67.71% 67.38%
表现优异的
概率
(三年)
79.42% 75.81% 75.30%
表现优异的
概率
(五年)
86.94% 84.62% 84.44%

结论

跟踪误差风险控制是管理多因子指数样本外跟踪误差的有效方法,也有助于减少多因子指数的行业偏差。我们不必把婴儿和洗澡水一起倒掉。

然而,从长远来看,将因子投资组合的表现与市值加权指数相匹配可能不利于绝对回报和风险调整回报。此外,简单的股权投资上限加权方法缺乏经济和概念基础来证明其使用的合理性。虽然它们在某些市场环境中可能表现出色,但它们不具备获得卓越的长期风险调整业绩的公式。

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/73825.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年7月31日 01:10
下一篇 2023年7月31日 01:26

相关推荐

  • 中国并不是唯一一个股票打折交易的新兴市场

    中国并不是唯一一个股票打折交易的新兴市场 Rayliant Global Advisors 的 Phillip Wool 表示:“困扰中国的挑战为中国以外的新兴市场投资者带来了巨大机遇。” 插图由II 新兴市场股票的前景看起来充满希望——至少从估值的角度来看是这样。 根据 Rayliant Global Advisors 全球研究主管 Phillip Woo…

    2023年8月3日
    18900
  • 北京大学R语言教程(李东风)第45章: 用H2O包进行统计学习

    介绍 H2O是一个开源的、集成的机器学习环境,基于Java语言开发,支持并行处理,支持大型数据。R的H2O扩展包提供了对H2O软件的接口,可以用比较统一的界面访问各种机器学习方法。 H2O使用自己的数据格式,R的data.frame和data.table可以用as.h2o()函数转换为H2O的H2OFrame格式。 H2O的R扩展包利用网络服务访问正在运行的…

    2023年12月5日
    50200
  • PEG 比率是一个可靠的市场时机选择工具吗?

    投资者依靠估值指标来判断股票是否合理定价。在这些指标中,PEG 比率因其能够根据未来收益预期调整股票估值而广受欢迎。与仅将价格与当前收益进行比较的标准市盈率(P/E)比率不同,PEG 比率包含了增长预期。它仅仅是公司市盈率除以其增长率。理论上,这使它成为评估股票是被低估还是高估的更精细工具。 但 PEG 比率是否能为广泛的市场趋势提供有意义的见解?为了找出答…

    2025年6月26日
    3300
  • 加密货币:比特币创下历史新高

    每周更新跟踪一些市场份额最大的加密货币:比特币和以太币。我们还包括了 XRP,因为在本系列开始时它是最大的加密货币之一。根据维基百科,加密货币是“一种数字资产,旨在作为交换媒介,使用密码学来保护其交易,控制附加单位的创建,并验证资产的转移。” 比特币是世界上第一个加密货币和去中心化数字货币。第一笔比特币交易发生于 2009 年初,此后在全球范围内不断增长。以…

    2024年3月14日
    8200
  • 什么事信用管理?信用管理的目标是什么?

    您如何管理信用可以决定您的个人财务状况。信贷可以是获得您需要和想要的东西的有用工具,但如果您不小心,它也可能导致您的财务崩溃。 明智地使用信贷可以为您提供一生的机会,但滥用信贷或积累您无法偿还的债务可能会损害您的经济利益,并关闭您可能没有考虑过的大门。无论是由于年轻、经验不足、缺乏知识还是个人财务危机,许多人随着时间的推移犯下了令人遗憾的财务失误,并发现自己…

    2023年7月10日
    19300

发表回复

登录后才能评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部