因子投资组合与市值加权指标策略,可以缩小跟踪误差吗?

尽管在 2022 年短暂恢复正常,但自 2020 年 COVID-19 引发的市场崩盘以来,股票因子策略相对于市值加权指数经历了绩效挑战。虽然对这些挑战有很多解释,但我们这里的重点是另一个问题:

是否有可能保留因子方法进行股权投资的好处和经济合理的基础,同时使因子投资组合的表现与市值加权指标更紧密地保持一致?

 

在回答这个问题之前,让我们简要回顾一下市值加权指数的缺点。在市值加权指数中,市值较高的公司在指数中的权重较高。另一方面,规模较小的公司可能拥有最大的增长空间,但权重较低。投资上限加权指数策略固有的风险有三重。第一,随着权重最大的公司“均值恢复”到较低的价格水平,他们可能会遭受损失。其次,通过减持规模较小的公司,市值加权策略可能会阻止投资者从最具增长潜力的公司中真正受益。最后,市值加权指数策略相对集中于最大股票的一小部分。

相比之下,正确构建的股权因子策略将受到风险因素的驱动,这些风险因素已被证明可以在长期内奖励投资者。这些因素——价值动量、规模、盈利能力、投资和低波动性——已经被不同研究人员几十年来的经验验证,并具有清晰直观的经济原理。与上限加权指数和模仿其行为的产品相比,涉及所有六个因素的多因素投资组合通常更加多元化和波动性更低的投资工具。虽然后一个特征对因子投资组合有很好的作用,但正如我们所看到的,在某些市场环境中,股票因子投资组合的表现可能逊于市值加权策略。问题是:

什么是要做?

如下所示,没有必要在因子投资和市值加权绩效之间进行二元选择。虽然从长远来看,以批发方式倾向于上限加权基准可能不会让投资者受益,但有一个中间方法:继续投资于因子策略,但应用跟踪误差约束,以缩小上限加权和“无约束”之间的绩效差距” 给定时期内的因子投资组合。正如我们的分析所示,将后者的调整应用于因子投资组合无论从短期还是长期来看都有优点和缺点。

 

跟踪误差约束因子投资组合如何表现?

下图显示了标准六因子投资组合(其中每个因子具有相同的权重)与其跟踪误差 (TE) 约束变体之间的近期绩效差异。当我们应用 TE 约束时,该表表明因子组合与上限加权指数之间的绩效差距大幅缩小。然而,这些投资组合付出的代价是额外波动性约 100 个基点 (bps),以及下行保护恶化(以最大回撤衡量)。


具有跟踪误差约束的因子投资组合,
2022年12月31日至2023年6月30日

上限
加权
六因素
等权
六因素
等权
1% TE目标
六因素
等权重
2% TE 目标
返回 17.13% 6.04% 14.70% 12.38%
挥发性 14.44% 13.10% 14.05% 13.72%
夏普
比率
1.01 0.27 0.87 0.72
最大限度。回撤 7.43% 7.90% 7.51% 7.61%
相对
回报
-11.09% -2.43% -4.75%
跟踪
误差
4.65% 0.98% 1.95%
信息
不适用 不适用 不适用
最大限度。相对
回撤
10.04% 2.19% 4.29%

下表中 TE 控制的投资组合的行业构成显示,相对于标准多因子投资组合,科技行业的严重暴露不足显着下降。这可能并不令人意外。毕竟,较大的科技公司一直是市值加权工具相对于股权因子策略表现优异的主要驱动力之一。


截至 2023 年 6 月 30 日的行业分配

上限加权 六因素
等权
六因素
等权
1% TE目标
六因素
等权重
2% TE 目标
绝对重量 相对重量 绝对重量 相对重量 绝对重量 相对重量
活力 4.7% 6.3% 2.0% 5.3% 0.6% 5.9% 1.2%
基础
材料
2.3% 2.6% 0.3% 2.4% 0.0% 2.4% 0.1%
工业品 8.8% 7.4% -1.4% 8.3% -0.4% 7.9% -0.9%
周期性消费者 12.4% 11.7% -1.0% 12.0% -0.3% 11.7% -0.7%
非周期性
消费者
6.5% 11.2% 5.1% 7.4% 0.9% 8.3% 1.8%
金融 12.7% 13.1% 1.5% 12.9% 0.2% 13.1% 0.4%
医疗
保健
14.2% 17.7% 4.2% 14.8% 0.6% 15.4% 1.2%
科技 34.5% 21.5% -15.7% 31.7% -2.8% 28.9% -5.7%
电信 1.1% 2.0% 0.9% 1.3% 0.2% 1.6% 0.4%
公用事业 2.7% 6.6% 4.1% 3.8% 1.0% 4.8% 2.1%

在较长的衡量范围内,下图表明,控制 TE 会增加波动性并降低回报,从而损害长期风险调整后的业绩。信息比率和在各个方面跑赢市值加权指数的可能性也略有恶化。


长期风险调整后业绩,
1971年6月30日至2022年12月31日

上限加权 六因素
等权
默认
投资组合
标准投资组合
TE 1%
标准投资组合
TE 2%
周年
申报表
10.22% 13.10% 10.95% 11.63%

波动率
17.33% 15.53% 16.82% 16.38%
夏普比率 0.33 0.55 0.38 0.43
最大限度。
回撤
55.5% 50.9% 54.0% 53.5%
年度
相对
回报率
2.88% 0.72% 1.41%

跟踪
误差
4.20% 1.14% 2.21%
信息
0.69 0.63 0.64
最大限度。相对
回撤
20.1% 5.8% 10.7%
表现优异的
概率
(一年)
66.89% 67.71% 67.38%
表现优异的
概率
(三年)
79.42% 75.81% 75.30%
表现优异的
概率
(五年)
86.94% 84.62% 84.44%

结论

跟踪误差风险控制是管理多因子指数样本外跟踪误差的有效方法,也有助于减少多因子指数的行业偏差。我们不必把婴儿和洗澡水一起倒掉。

然而,从长远来看,将因子投资组合的表现与市值加权指数相匹配可能不利于绝对回报和风险调整回报。此外,简单的股权投资上限加权方法缺乏经济和概念基础来证明其使用的合理性。虽然它们在某些市场环境中可能表现出色,但它们不具备获得卓越的长期风险调整业绩的公式。

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/73825.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年7月31日 01:10
下一篇 2023年7月31日 01:26

相关推荐

  • 彭博:收益率为 5% 的国库券深受美国散户投资者欢迎

    对现金看似永无止境的需求正在席卷市场。 每个人——从家庭成员到企业财务主管和大型资产管理公司——都在蜂拥而至,被一个独特的机会所吸引:锁定 5% 的收益率,并保护自己免受美国经济不确定性的影响。 由于现金和类似现金工具的利率处于二十多年来的最高水平,并且提供的收入高于基准美国债务或股票,货币市场基金的资产已膨胀至创纪录水平。但对流动性高收益工具的兴趣在国债市…

    2023年9月15日
    18000
  • 北京大学R语言教程(李东风)第9章: R日期时间

    R日期和日期时间类型 R日期可以保存为Date类型,一般用整数保存,数值为从1970-1-1经过的天数。 R中用一种叫做POSIXct和POSIXlt的特殊数据类型保存日期和时间,可以仅包含日期部分,也可以同时有日期和时间。技术上,POSIXct把日期时间保存为从1970年1月1日零时到该日期时间的时间间隔秒数,所以数据框中需要保存日期时用POSIXct比较…

    2023年10月27日
    30900
  • 北京大学R语言教程(李东风)第34章:R公式界面与设计阵

    34.1 R语言公式界面 R语言继承了来自S语言的公式界面, 用以描述统计模型中因变量和自变量的关系, 并有相应的将自变量群组转换为相应的线性模型设计阵的默认规则。 R语言的线性回归(lm)、方差分析(aov)、广义线性模型(glm)、线性混合模型(nlme::lme)等回归类建模函数都使用公式(formula)界面描述因变量与自变量之间的关系。 …

    2023年11月23日
    41500
  • 量化基金从人工智能中获得业绩提升,至少在测试中是这样

    一家量化公司从人工智能中获得性能提升——至少在测试中是这样 “基于机器学习的方法比传统方法要好得多……它们可以更好地对风险进行建模,”Robeco 的 Patrick Houweling 说道。 插图由II 资产管理公司正在竞相研究机器学习和人工智能如何提高他们的业绩。量化管理公司荷宝 (Robeco) 管理着 1700 亿美元的资产,是最新一家认真尝试这些…

    2023年7月16日
    17700
  • 您的客户的最佳股权配置是什么?

    投资顾问可能高估了股票对长期投资者的风险。我们分析了 1870 年至 2020 年 15 个不同国家的股市回报,发现随着投资期限的延长,最佳股票配置会增加。 使用一年期收益的优化模型通常会忽略收益的历史序列依赖性,因此自然而然地,它们可能会高估股票对于长期投资者的风险,对于那些更为规避风险和关注通胀风险的投资者来说尤其如此。 在我们之前的博客文章中,我们回顾…

    2024年8月6日
    5100

发表回复

登录后才能评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部