北京大学Julia语言入门讲义第23章: Julia编程示例–递归趣例

23.1 汉诺塔问题

设有三根柱子A, B, C,
有大小依次为1,2,…,𝑛𝑛个空心圆盘,
在A柱子上依次从低向上穿了𝑛,𝑛−1,…,1大小的圆盘。
任务是要把这𝑛个圆盘移动到C柱子上,
仍按照从低向上越来越小的次序。
移动的要求为:

  • 每次仅移动一个圆盘到另一个柱子上;
  • 每次的移动,都不能使得增加一个圆盘的柱子上的大圆盘压在小圆盘上。

这个问题是典型的递归问题:

  • 如果仅有一个圆盘(𝑛=1),
    就直接将A柱子的圆盘放到C柱子,问题解决;
  • 如果有𝑛>1个圆盘,分为三个步骤:
    • 将A柱子上面的𝑛−1个圆盘以C柱为缓存转移到B柱子;
    • 将A柱子最下面的𝑛号圆盘转移到C柱子;
    • 将B柱子的𝑛−1个圆盘以A柱子为缓存转移到C柱子,问题解决。

其中,在将B柱子的𝑛−1个圆盘转移到𝐶时,
会将最上面的𝑛−2个先转移到A柱子,
所以递归过程中三个柱子的地位是可以互相改变的。

用三个数组表示A, B, C三个柱子,
数组第一个元素记录柱子编号,
数组第二个元素表示放在最下面的圆盘编号(1号最小,𝑛号最大),
后续元素依次表示上面的圆盘。

function demo_hanoi(n=3)
    # 用第一个元素保存柱子编号,
    # 后续元素保存圆盘大小
    a = [1; collect(n:-1:1)]
    b = Int[2]
    c = Int[3]
    labels = ("A", "B", "C")

    function solve!(a, b, c, n)
        if n == 1
            plate = pop!(a)
            push!(c, plate)
            println("$(plate): $(labels[a[1]]) ==> $(labels[c[1]])")
        else 
            # 将A柱上面的n-1个通过C移动到B
            solve!(a, c, b, n-1)
            # 将A柱最下面的n号圆盘移动到C
            plate = pop!(a)
            push!(c, plate)
            println("$(plate): $(labels[a[1]]) ==> $(labels[c[1]])")
            # 将B柱上面的n-1个通过A移动到C
            solve!(b, a, c, n-1)
        end 
    end 

    solve!(a, b, c, n)
end 

demo_hanoi()

结果如:

1: A ==> C
2: A ==> B
1: C ==> B
3: A ==> C
1: B ==> A
2: B ==> C
1: A ==> C

23.2 高斯八皇后问题

国际象棋的棋盘是 8×8 的格子。
国际象棋手马克斯·贝瑟尔于 1848 年提出如下问题:
在 8×8 格的国际象棋上摆放八个皇后,
使其不能互相攻击,
即任意两个皇后都不能处于同一行、同一列或同一斜线上,
问有多少种摆法。
高斯认为有 76 种方案。
1854 年在柏林的象棋杂志上不同的作者发表了 40 种不同的解,
后来有人用图论的方法解出 92 种结果。

23.2.1 穷举法

要用编程的方法解决,
首先想到的是,
每个皇后有64个位置可选,
穷举可以考虑648≈2.8×1014种组合,
即百万亿级别的组合,
计算量太大。

实际上,
对于每一种可行的摆法,
因为每一行有且仅有一个皇后,
穷举时所以只需要考虑每一行的皇后在那一列,
88=16,777,216种组合,
即约一千万种组合。
这个组合数目虽然很大,
但对于现代计算机来说可以很快地完成穷举。

这里记录一个Python编程实现。
将一种可能的摆法存入一个长度为8的列表,
每个元素代表对应的行的皇后位置。
虽然可以写一个8重循环,
但是这样的程序过于繁琐。
所以,
采用八进制的想法,
[0,0,0,0,0,0,0,0]出发,
每次给个位加1,
遇到8就向下一位进1,
直到循环88次。
写一个函数判断新的一个位置是否合法。

import time

## 检查一种摆法是否合法
## x是长度为8的列表,代表从低位到高位的8进制数字,
## 用每个数字代表一行的棋子所在的列。
def is_solution(x):
    for i in range(7):
        for j in range(i+1, 8):
            di = x[j] - x[i]
            if di==0 or di==j-i or di==i-j :
                return False
    return True
            
## 穷举进入下一个摆法
def next_board(x):
    x[0] += 1
    for i in range(7):
        if(x[i]==8):
            x[i+1] += 1
            x[i] = 0
    return x
            
def queens_exaust():
    board = [0]*8
    nmax = 8**8
    ## boards用来存放所有的摆法,
    ## 每种摆法表示为8个元素的列表
    boards = []
    nb = 0
    for i in range(nmax):
        if is_solution(board):
            print(str(nb) + ',' + ','.join(map(str, board)))
            boards.append(board.copy())
            nb += 1
        
        board = next_board(board)
    return boards


time_start=time.time()
res1 = queens_exaust()
time_end=time.time()
print('穷举法用时', time_end-time_start)
print('解的个数:', len(res1))

用时50秒,得到了92个解。

下面是Julia版本的程序:

## 检查一种摆法是否合法
## x是长度为8的数组,第i个元素是第i行的棋子所在的列序号
function is_solution(x)
    for i in 1:7
        for j in (i+1):8
            di = x[j] - x[i]
            if di==0 || di==j-i || di==i-j
                return false
            end
        end
    end
    return true
end

## 穷举进入下一个摆法
## 把长度为8的数组x看成是有8位数的8进制数,但数字都加1,
## 次序是从低位到高位
function next_board(x)
    x[1] += 1
    for i in 1:7
        if x[i]==9
            ## 进位
            x[i+1] += 1
            x[i] = 1
        end
    end

    return x
end

function queens_exaust()
    board = ones(Int8, 8)
    nmax = 8^8
    nbmax = 1000
    nb = 0
    boards = zeros(Int8, nbmax, 8)
    for i in 1:nmax
        if is_solution(board)
            nb += 1
            println(board)
            boards[nb,:] = board
        end

        board = next_board(board)
    end
    boards = boards[1:nb,:]
    return boards
end
@time queens_exaust()

用时0.93秒,得到92个解。

23.2.2 递归算法

穷举法完全不考虑已经摆放的棋子,
所以另一种更好的做法是使用递归算法,
先在第一行摆下一颗棋子,
这有8种摆法;
然后,在第二行试图摆下第二颗棋子,
使得与第一颗棋子不冲突;
再考虑第三颗棋子,
如此一直到第八颗棋子。
这个过程中如果某颗棋子无法摆放,
就退回到上一颗棋子的下一个位置;
找到一种摆法后,
也考虑最后一颗棋子的下一个位置。

下面是从百度百科网站复制的Python版本的递归算法程序。

## 用长度为8的列表A表示一种摆法,
## 用cur表示当前要摆放的棋子序号,0 <= cur < 8
def queens(A, cur=0):
    if cur == len(A):
        ## 如果当前棋子序号为8,表示找到了一种摆法
        print(','.join(map(str, A)))
        boards.append(A.copy())
        return 0
    ## 对每颗棋子col遍历
    for col in range(len(A)):
        ## 将当前棋子cur摆放在col列,
        A[cur] = col
        ## 设置摆放是否合法的初值为真
        flag = True
        ## 判断cur号棋子摆放在col列,是否与0到cur-1号棋子有冲突
        ## row是用来遍历0到cur-1号棋子的变量
        for row in range(cur):
            ## 以下判断摆放在第cur行、第col列的棋子,
            ## 是否与第row行、A[row]列的棋子冲突
            if A[row] == col or abs(col - A[row]) == cur - row:
                flag = False
                break
        ## 如果摆放第cur号棋子在第col列成功,
        ## 就考虑下一颗棋子(递归调用);
        ## 如果摆放不成功,就摆放到col的下一列继续判断
        ## 这样会遍历每颗棋子与前面棋子的不冲突的位置
        if flag:
            queens(A, cur+1)

boards = []
queens([None]*8)

也是92个结果,用时仅30毫秒。

下面是Julia版本的程序:

## 递归算法
## 用长度为8的数组A表示一种摆法,
## 用cur表示当前要摆放的棋子序号,1 <= cur <= 8
function queens()
    nbmax = 1000
    nb = 0
    boards = zeros(Int8, nbmax, 8)

    function queens_rec(A, cur=1)
        if cur == 9
            ## 如果当前棋子序号为9,表示找到了一种摆法
            nb += 1
            boards[nb,:] = A
            ##println(join(string.(A), ","))
            return
        end # if cur

        ## 对当前要摆放的棋子遍历所有列位置试摆放
        for col in 1:8
            ## 将当前棋子cur摆放在col列,
            A[cur] = col
            ## 设置摆放是否合法的初值为真
            flag = true
            ## 判断cur号棋子摆放在col列,是否与1到cur-1号棋子有冲突
            ## row是1到cur-1号棋子的变量
            for row in 1:(cur-1)
                ## 以下判断摆放在第cur行、第col列的棋子,
                ## 是否与第row行、A[row]列的棋子冲突
                if A[row] == col || abs(col - A[row]) == cur - row
                    flag = false
                    break
                end
            end # for row

            ## 如果摆放第cur号棋子在第col列成功,
            ## 就考虑下一颗棋子(递归调用);
            ## 如果摆放不成功,就摆放到col的下一列继续判断
            ## 这样会遍历每颗棋子与前面棋子的不冲突的位置
            if flag
                queens_rec(A, cur+1)
            end
        end # for col
    end # function queens_rec

    queens_rec(zeros(Int8, 8), 1)
    boards = boards[1:nb,:]
    println("找到解的个数:", nb)

    return boards
end # function queens
@time queens()

找到92个解,用时0.1秒。

23.2.3 找到变换等价的摆法

还可以继续考虑这些解法中哪些是不能通过左右反射、上下反射,
旋转90、180、270度、沿主对角线反转、沿反对角线反转得到的,
按如果能通过变换得到就分为一组。
可以验证,这些变换构成一个变换群,
从而可以用来定义等价类,
可以通过变换变成相同的解法为同一类。
找到12个类。

import DataFrames: DataFrame
import CSV

function board_equals(x, y)
    ## 棋盘的8元素存储到8x8的0-1矩阵存储
    bs = length(x)
    function board_to_mat(z)
        mat = zeros(Int,bs,bs)
        for i in 1:bs
            mat[i,z[i]] = 1
        end # for i
        return mat
    end # board_to_mat

    xm = board_to_mat(x)
    ym = board_to_mat(y)

    # 左右反射
    function reflect_lr(z)
        return z[:, end:-1:begin]
    end # reflect_lr

    # 上下反射
    function reflect_ud(z)
        return z[end:-1:begin, :]
    end # reflect_ud

    function idtran(z)
        return z
    end
    
    # 逆时针旋转90度, rotl90
    # 旋转180度, rot180
    # 顺时针旋转90度,rotr90
    # 转置:transpose
    # 沿反对角线反转:reflect_lr ∘ rotl90

    funcs = [reflect_lr, reflect_ud, 
        rotl90, rotr90, rot180,
        transpose, reflect_lr ∘ rotl90]

    for i in 1:length(funcs)
        f = funcs[i]
        ynew = f(ym)
        if all(ynew .== xm)
            return true
        end # if
    end # for f

    return false
end # board_equals

## 标记通过变换可以得到的摆法
function group_boards(boards)
    b = copy(boards)
    nb = size(b, 1)    # 摆法个数
    g = zeros(Int, nb) # 分组编码,每种摆法一个值
    ng = 1   # 分组编码初值
    g[1] = 1 # 第一中摆法分组为1 

    for j in 2:nb # 对从第二种摆法开始的每一种摆法
        newgroup = true
        for i in 1:(j-1) 
            ## 判断第j种摆法是否与前面的第i种摆法可转换,
            ## 如果可转换,将第j摆法标记为第i中摆法的分组编码
            if board_equals(b[i,:], b[j,:])
                g[j] = g[i]
                newgroup = false
                break
            end # if
        end # for i
        if newgroup
            ng += 1
            g[j] = ng
        end # if
    end # for j

    ## 保存为csv
    println("找到分组个数:", ng)
    grouped = [1:nb boards g]
    qn = ["solution"; "Q" .* string.(1:8); "group"]
    df = DataFrame(grouped, Symbol.(qn))
    sort!(df, :group)
    df[:, :solution] = 1:nb
    CSV.write("queens_group_julia.csv", df)
    
    return grouped
end # group_boards

boards = queens()
grouped = group_boards(boards);

结果的CSV文件:

solution,Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,group
1,1,5,8,6,3,7,2,4,1
2,1,7,5,8,2,4,6,3,1
3,3,6,4,2,8,5,7,1,1
4,4,2,7,3,6,8,5,1,1
5,5,7,2,6,3,1,4,8,1
6,6,3,5,7,1,4,2,8,1
7,8,2,4,1,7,5,3,6,1
8,8,4,1,3,6,2,7,5,1
9,1,6,8,3,7,4,2,5,2
10,1,7,4,6,8,2,5,3,2
11,3,5,2,8,6,4,7,1,2
12,4,7,5,2,6,1,3,8,2
13,5,2,4,7,3,8,6,1,2
14,6,4,7,1,3,5,2,8,2
15,8,2,5,3,1,7,4,6,2
16,8,3,1,6,2,5,7,4,2
17,2,4,6,8,3,1,7,5,3
18,3,8,4,7,1,6,2,5,3
19,4,2,8,6,1,3,5,7,3
20,4,7,3,8,2,5,1,6,3
21,5,2,6,1,7,4,8,3,3
22,5,7,1,3,8,6,4,2,3
23,6,1,5,2,8,3,7,4,3
24,7,5,3,1,6,8,2,4,3
25,2,5,7,1,3,8,6,4,4
26,3,6,2,7,1,4,8,5,4
27,4,1,5,8,2,7,3,6,4
28,4,6,8,3,1,7,5,2,4
29,5,3,1,6,8,2,4,7,4
30,5,8,4,1,7,2,6,3,4
31,6,3,7,2,8,5,1,4,4
32,7,4,2,8,6,1,3,5,4
33,2,5,7,4,1,8,6,3,5
34,3,6,2,7,5,1,8,4,5
35,3,6,8,1,4,7,5,2,5
36,4,8,1,5,7,2,6,3,5
37,5,1,8,4,2,7,3,6,5
38,6,3,1,8,5,2,4,7,5
39,6,3,7,2,4,8,1,5,5
40,7,4,2,5,8,1,3,6,5
41,2,6,1,7,4,8,3,5,6
42,3,1,7,5,8,2,4,6,6
43,3,5,7,1,4,2,8,6,6
44,4,6,1,5,2,8,3,7,6
45,5,3,8,4,7,1,6,2,6
46,6,4,2,8,5,7,1,3,6
47,6,8,2,4,1,7,5,3,6
48,7,3,8,2,5,1,6,4,6
49,2,6,8,3,1,4,7,5,7
50,3,7,2,8,6,4,1,5,7
51,4,2,5,8,6,1,3,7,7
52,4,8,5,3,1,7,2,6,7
53,5,1,4,6,8,2,7,3,7
54,5,7,4,1,3,8,6,2,7
55,6,2,7,1,3,5,8,4,7
56,7,3,1,6,8,5,2,4,7
57,2,7,3,6,8,5,1,4,8
58,2,8,6,1,3,5,7,4,8
59,4,1,5,8,6,3,7,2,8
60,4,7,5,3,1,6,8,2,8
61,5,2,4,6,8,3,1,7,8
62,5,8,4,1,3,6,2,7,8
63,7,1,3,8,6,4,2,5,8
64,7,2,6,3,1,4,8,5,8
65,2,7,5,8,1,4,6,3,9
66,3,6,4,1,8,5,7,2,9
67,4,2,7,3,6,8,1,5,9
68,4,8,1,3,6,2,7,5,9
69,5,1,8,6,3,7,2,4,9
70,5,7,2,6,3,1,8,4,9
71,6,3,5,8,1,4,2,7,9
72,7,2,4,1,8,5,3,6,9
73,3,5,2,8,1,7,4,6,10
74,4,6,8,2,7,1,3,5,10
75,5,3,1,7,2,8,6,4,10
76,6,4,7,1,8,2,5,3,10
77,3,5,8,4,1,7,2,6,11
78,3,6,8,2,4,1,7,5,11
79,3,7,2,8,5,1,4,6,11
80,4,2,8,5,7,1,3,6,11
81,5,7,1,4,2,8,6,3,11
82,6,2,7,1,4,8,5,3,11
83,6,3,1,7,5,8,2,4,11
84,6,4,1,5,8,2,7,3,11
85,3,6,2,5,8,1,7,4,12
86,3,6,8,1,5,7,2,4,12
87,4,2,7,5,1,8,6,3,12
88,4,7,1,8,5,2,6,3,12
89,5,2,8,1,4,7,3,6,12
90,5,7,2,4,8,1,3,6,12
91,6,3,1,8,4,2,7,5,12
92,6,3,7,4,1,8,2,5,12

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/75993.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年9月4日 23:36
下一篇 2023年9月5日 23:43

相关推荐

  • 百度财富值有什么用??(百度财富值怎么获得?)

    百度财富值怎么获得获得百度知道财富值方法如下:1 新用户首次登陆 +20 完成帐户的激活;2 回答被采纳为最佳答案 +20+悬赏分;3 “网友推荐答案” +10经验值 +10财富值;4 回答被赞同,也能得到一定的经验值和财富值,这个每天是有上限的,其上限值与等级有关;5 当选“知道之星” +5000财富值。

    2013年9月21日
    19600
  • 为什么你不应该担心经济衰退?

    股市继续下跌,像往常一样,这种市场上的人们惊慌失措,纷纷逃离。每个人都想知道市场可能会下跌多少。无论你选择的专家听起来多么自信,这个问题都没有答案。我们所知道的是,每隔几年市场就会给我们打折,去购物可能最符合您的利益。 ““每隔十年左右,经济天空就会布满乌云,并会短暂地下黄金雨。””– 沃伦·巴菲特什么是市场崩盘?首先,重要的是要了解市场崩盘只是…

    2023年11月27日
    10200
  • 通胀仍呈下行趋势

    要点 经济放缓愈加明显 通胀仍处于下行通道 一切都与美联储的点图有关 美联储 (Fed) 将于下周召开年度最后一次会议,这是 2023 年最后一次重大经济事件。虽然加息的可能性不大,但美联储将提供有关经济和利率前景的季度更新。此次会议召开之前,股票和债券市场出现了一些爆炸性走势,部分美联储成员的鸽派评论和讲话以及市场对美联储明年将大幅降息的乐观情绪日益高涨,…

    2023年12月30日
    9100
  • 美联储转向的秘密生活

    作者:,Hussman Funds 投机泡沫破灭。我不知道如何让这一点变得更简单,但无论如何还是需要说出来。尽管如此,关注投资者的心理——投机与风险规避——还是有很大帮助的。市场崩盘无非就是低风险溢价遇到避险情绪。事实上,当投资者变得厌恶风险时,他们会将安全的流动性视为一种理想的资产,而不是一种劣等的资产,因此创造更多的资产并不能支撑股市。这就是2000-2…

    2024年1月10日
    2500
  • 央行黄金储备最多的20个国家(截至2024年8月)

    摘要 尽管今年迄今金价强劲上涨,但仍有几个因素可能导致金价上涨。 美元走弱和实际利率下降历来都是黄金的利好因素。 长期来看,各国央行可能会继续购买黄金。 经济增长放缓、央行放松政策以及政府赤字过大的环境可能会为金价提供额外支撑。 黄金价格 本地黄金价格溢价/折价 中国和印度最大的几个市场中的消费者根据本地的黄金价格作出购买决定。这些地区的当地金价往往偏离国际…

    2024年11月19日
    7700

发表回复

登录后才能评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部