阿尔法生成和风险缓解的投资组合构建

作者:Josh Lohmeier

在这个利率较高的时期,要获取阿尔法并降低企业信贷风险​​,需要采取更精细的方法。富兰克林邓普顿固定收益公司的 Josh Lohmeier 揭示了一个动态的投资组合构建过程,该过程可适应各种类型的投资者,并可在不同类型的环境中重复。

要点:

  • 在当前利率长期较高的环境下,我们认为需要更复杂的技术来捕捉阿尔法(高于基准回报的投资所获得的超额回报)并提供更好的下行保护。
  • 除了自下而上的特殊证券选择之外,我们相信,深思熟虑的量化投资组合构建和风险分配流程可能会产生相对于同行群体一致且不相关的超额回报,这可以使多元化的投资者受益。

行为偏差和市场效率低下

在典型的自下而上的企业信用选择基础研究框架中,分析师可能很难推荐一种高质量的企业债券,该债券的交易价差相对于其基准或同类债券非常窄,因为这种债券只有在风险较高的情况下才会跑赢大盘。债券表现不佳。此外,投资经理往往对其预测投资业绩的能力过于乐观,这导致他们倾向于持有风险较高的信贷市场。与基准或贝塔相比,这种行为偏差可能会导致投资组合风险更高。另一个潜在的结果是投资组合头寸的重复出现,这些头寸总体上是长期套利(试图超越基准的趋势)和相对于基准的长期贝塔值,这使客户面临超额回报波动性,而这种波动性取决于市场的方向。一个例子是,如果一段时期的市场低迷和避险情绪盛行,投资组合可能表现不佳,因为投资组合不是贝塔中性的,并且比基准的风险更大。

在我们深入研究投资组合构建的阿尔法推导之前,我们想指出,通过聘用主动型基金经理,客户承认指数或金融市场本质上是低效的。主动管理的增值之处在于,我们将信贷领域解构为子集,以利用低效率并尝试产生额外的阿尔法,同时更好地将我们的研究想法纳入投资组合,并在一致的基础。

根据波动性对机会集进行存储

在资产管理行业内,企业信用研究团队通常按照彭博社风格的行业分类进行组织。虽然富兰克林邓普顿的投资级 (IG) 企业信贷团队也是按照行业线组织的,但我们增加了一个额外的分析维度,要求我们的分析师根据他们的前瞻性观点对证券质量从最高到最低进行排名,并预测点差应如何相互交易;我们认为,由此产生的对话确定了哪些债券相对于同类债券更便宜或风险更高。

同一行业的所有发行人在信用评级或其他特殊因素方面并非都相似,因此,不同发行人的风险状况有所不同。例如,高质量 A 级技术发行人相对于指数的长期债券利差通常较小,而 BBB 评级技术发行人相对于指数的利差通常较大且波动性很大。因此,高质量和低质量的科技公司在风险和波动性方面几乎没有共同点。

为了更好地划分投资组合的风险,我们根据历史利差波动性将行业范围分为低贝塔值、中贝塔值和高贝塔值三个类别。低贝塔值可以被认为是最高质量的企业(例如相对于波动性最低的指数具有最窄利差的发行人)。中贝塔值的一个例子是质量较高、周期性较小的 BBB 评级信贷,而高贝塔值通常是周期性较强、质量较低的 BBB 评级信贷,例如 BBB 商品发行人。我们认为,这种方法不仅从自下而上的角度出发,而且还通过隔离部门并将风险较高的部分与较高质量的部分分开,从而实现更好的投资组合构建过程,以实现更好的风险分配。当我们对高质量发行人与低质量发行人进行排名时,我们得出的结论是,需要更有效地应对贝塔风险,以便机会集真正与更合适的同行群体竞争。

沿收益率曲线战略性布局机会集

信贷管理者通常寻求通过承担比基准更长的久期风险来增加投资回报。虽然这种策略通常在利率保持低位且利差受到控制时对投资者有利,但如果利率或市场状况对其头寸不利,它也会使投资者面临可能的损失。随着我们进入长期较高的利率制度,并预测风险资产波动性更大,我们认为应该重新审查用于增加回报的较长久期和较高贝塔风险公式。我们认为,利率变动本质上是不可预测的。因此,我们采用了久期中性的方法,因为我们认为久期管理相对于创意生成和投资组合构建而言是不太一致的阿尔法来源。

由于信用曲线反映了不同期限的收益率水平,因此我们通过在曲线上的陡峭点建立头寸来确定我们认为最有效的风险承担位置,这将提供滚降带来的额外回报(一种技术,投资者会拥有债券并持有一段时间,以便债券的价值随着其接近到期日而增加(因为其收益率较低)。在信用曲线平坦甚至倒挂的情况下,超过一定期限的风险就没有额外的利差补偿,我们会避免这样做。简而言之,鉴于不同行业和评级的信用曲线形状不同,沿着信用曲线放置债券头寸可以极大地增加投资组合回报。

在确定信用曲线上的最大滚动定位时,我们还考虑最佳利差点在信用曲线上的位置(或持有债券回报最佳的点)。通过根据风险状况(如前所述)将信用分组,我们能够更好地评估这些不同波动类别中的相对利差潜力。

把它们放在一起

我们相信,我们独特的投资组合构建方法使我们能够融入我们最好的特殊证券选择理念,同时通过根据波动性等级进行风险分桶,实现相对于我们的基准的贝塔中性。贝塔中性的一个好处是,市场方向性不再是阿尔法生成的一个因素,尤其是在当前很难确定市场是否会对好消息做出积极反应的市场环境下。

我们的投资组合优化流程还通过沿着信贷收益率曲线使用战略定位,努力实现相对于我们的基准的久期中性。我们认为,由此产生的投资组合可以隔离并利用基准的结构性低效率,同时试图提供不利市场条件的下行保护。

我们的投资组合构建框架可以轻松调整,以满足不同类型投资者的需求,从买入并持有的保险投资组合到利用出现的投资机会的更高周转率的主动策略。我们相信,我们拥有一个可重复的投资组合构建流程,并始终取得与同行相关性较低的积极成果。我们认为,客户需要其管理人员的多元化,就像他们需要其固定收益投资组合的多元化一样。

有什么风险?

所有投资均涉及风险,包括可能损失本金。固定收益证券涉及利率、信贷、通货膨胀和再投资风险,以及可能的本金损失。随着利率上升,固定收益证券的价值下降。主动管理并不能确保收益或防止市场下跌。

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/79124.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年11月30日 23:40
下一篇 2023年11月30日 23:50

相关推荐

  • 2023 年上半年美股市场成长风格超过价值风格,其优异表现会持续吗?

    洛杉矶资本管理公司的哈尔雷诺兹表示,价值股需要更好的经济条件才能持续反弹。 插图由II 推动成长型股票的动力不会消失——至少在短期内是这样。 根据 Confluence 最新的因子表现报告,2023 年前六个月,几乎所有增长子因子(例如盈利增长和销售增长)都超过了各自的基准。与此同时,所有价值子因素——包括账面市盈率、收益率和现金流收益率——都落后于基准至少…

    2023年8月4日
    15000
  • 弥合基本面与量化的鸿沟

    如今,大多数大型主动基金管理公司都拥有基本面和量化投资团队。从历史上看,这两个群体一直处于不同的孤岛,并且有充分的理由:他们对投资流程有不同的方法,并且使用不同的日常语言。 分歧的根源在于各自的教育基础。基本面投资者研究经济学并学习自下而上的投资过程,旨在确定单一股票的未来价值。量化分析师学习数学和工程学,并从大量市场数据开始,采用自上而下的方法进行投资决策…

    2023年8月26日
    15600
  • 北京大学R语言教程(李东风)第6章:字符型数据及其处理

    字符型向量 字符型向量是元素为字符串的向量。字符串在程序中写成用两个双撇号包围或者用两个单撇号包围的内容。如 s1 <- c(‘abc’, ”, ‘a cat’, NA, ‘李明’) 注意空字符串并不能自动认为是缺失值,字符型的缺失值仍用NA表示。 字符串内容一般从文件、网络、数据库获得,在程序中直接用双撇号或者单撇号写出只是输入字符串的办法之一。 …

    2023年10月24日
    22100
  • 市场波动即将卷土重来

    市场波动即将卷土重来 过去 15 年是股市的神奇时期——但不要指望它会持续下去。虽然美国股市可能确实拥有市场目前预测的光明未来,但增长的代价将是更大的波动性。 自金融危机以来,单纯投资标普 500 指数就能带来丰厚回报,且风险相当低。除了个别月份表现不佳(尤其是疫情期间),其他时间都表现平稳。 与之前的 15 年期相比,回报率低得多,而且大多数月份的波动性也…

    2024年7月11日
    9500
  • 持有黄金长线,但不要将其用作对冲工具

    持有黄金,但不要将其作为对冲工具使用 由 BlackRock 公司的 Russ Koesterich 提供,日期为 2/4/25 概要 历史上,较高的实际利率和强劲的美元曾对黄金构成逆风。 尽管存在这些因素,最近黄金价格仍持续上涨,这得益于中央银行的购买行为和美国不断扩大的赤字。 在这种环境下,黄金不太可能像对股票那样起到避险作用,而是作为一种长期的价值储存…

    2025年3月4日
    3200

发表回复

登录后才能评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部