如何确保您的职业生涯不会过时:T 型技能

提高我们的技能可以促进我们的职业发展,这是一条合乎逻辑的真理。然而,挑战在于知道我们的个人发展应该集中在哪里,才能获得最大的利益。《投资管理工作的未来:技能与学习》研究报告指出了当前投资行业技能供需的差距,强调了该行业颠覆的根源,并探讨了它们之间的交叉点。因此,它为如何最好地推动我们的职业发展提供了路线图。

发展领域

该报告将投资管理分为四个技能类别:

  • 技术技能是该行业的基础能力,例如财务分析、资产评估、投资组合管理等。
  • 软技能更加细致和定性。谈判和关系管理以及有效的沟通就是一些典型的例子。
  • 领导技能侧重于道德文化、治理以及如何阐明组织使命和愿景。
  • T 型技能形成了一个领域的深厚技术知识、对其他学科的广泛理解以及综合两者的能力之间的联系。

这些技能类别的重要性取决于我们所处的职业阶段。技术技能在早期更有价值:它们通常是进入该行业和执行日常工作所需的知识。然而,随着我们职位的晋升,软技能和领导技能变得更加重要,因为关系管理和影响力成为履行我们职责不可或缺的一部分。随着我们职业阶梯的上升,T 型技能也变得越来越重要,并被要求展示我们对情境的流畅性和对组织环境的把握。


技能在职业发展中的重要性

如何确保您的职业生涯不会过时:T 型技能

当然,新产品和技术加上监管的不确定性增加了投资管理行业本已复杂的生态系统的复杂性。因此,虽然技术、软技能或领导技能无可替代,但 T 型技能变得尤为重要。CFA协会早前发布的《未来投资专业人士》报告发现,此类技能是最需要培养的技能类型。最近一项针对 8,000 多名LinkedIn用户的民意调查证实了这一点:T 型技能被认为比技术、可持续发展/ESG 和软技能更有价值。问题是为什么。


对未来 5 至 10 年内以下技能类型对于成功投资专业人士的重要性进行排名(% 排名第一)


颠覆是变革的驱动力

技能和学习调查的 10 名受访者中有近 4 人认为,他们的工作角色将在未来 5 到 10 年内发生重大变化或不复存在。这群人认为,颠覆是不可避免的。

那么,颠覆从何而来?技能和学习调查的受访者预计,包括人工智能 (AI) 和机器学习 (ML) 在内的新分析方法以及对可持续性的日益重视将成为工作角色颠覆的两个主要来源。


您预计这些行业颠覆者中哪些会对这一变革做出重大贡献?(选择所有符合条件的)


T型思维模式帮助我们磨练适应能力并适应新趋势和技术。事实上,不断发展此类技能可能是为未来不确定的未来做好准备的最有效方法。行业颠覆者往往是从关键技能发展的差距中脱颖而出的。最近的行业趋势证明了这一点。人工智能/机器学习和可持续性是颠覆的两个主要来源。在这些领域,那些表现出熟练程度的人远远多于那些追求或有兴趣追求熟练程度的人。也就是说,这些领域对人才的需求远远超过供应,这就是为什么当前和有抱负的投资专业人士可能希望关注这些领域。


关键技能的供需


随着新技术、投资产品和策略的推出,跨多个学科的广泛知识将变得至关重要。随着专业技能被集成到通用工具包中,今天的创新将成为明天的惯例。我们适应这种转变的速度是技能邻接的一个因素:新兴技能与通才技能越一致,整合的速度就越快。

人工智能/机器学习和可持续性证明了这种关系。可持续性是对传统投资方法的延伸而不是拒绝:它寻求对投资风险和机遇建立更全面的看法。这意味着所需的技术技能与投资管理中已广泛应用的技术技能重叠或相邻。因此,将可持续发展方法融入通用技能中应该不是太艰巨的任务。

然而,人工智能和机器学习提出了更大的挑战。他们需要的技能与大多数投资管理通才所掌握的技能完全不同——数据科学、编码等。因此,可持续发展供需技能差距的缩小速度可能比人工智能和机器学习人才差距的缩小速度快得多。在考虑如何定位未来的职业时,请记住这一点。

为未来提升技能

投资管理既充满机遇,也面临颠覆。在竞争如此激烈且多变的环境中,我们的技能多样化至关重要。额外关注开发更多 T 型技能可以帮助我们为行业不可避免的转型做好准备并适应。我们需要找出人才供给与培训需求之间的差距,为自己的职业发展定位。

目前,邻近的技能——比如可持续性——可能是唾手可得的成果。我们应该考虑哪些技能是需要的并且与我们现有的知识库相邻。这些可能是值得关注的好目标。它们可以快速开发,而不会陷入不熟悉的领域太远。

其他与传统金融不太相似的技能可能更难培养。但如果他们拥有人工智能和机器学习的潜力,从长远来看,他们也可能会支付更多的红利。鉴于其复杂性,在可预见的未来,此类技能可能仍然是专家的领域。

但无论我们选择关注什么科目或技能类别,我们都需要致力于终身学习,每天学习新东西。投资管理是一个充满活力的行业,变化的速度太快,否则的话。任何从业者都不能让他们的知识或技能长期保持静止。

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/73871.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年7月23日 22:18
下一篇 2023年7月24日 23:22

相关推荐

  • 北京大学Julia语言入门讲义第3章: 函数进阶

    参数传递模式 Julia的参数传递是“共享传递”(pass by sharing),这样可以省去复制的开销。如果参数是标量的数值、字符串、元组(tuple)这样的非可变类型,参数原来的值不会被修改;如果参数是数组这样的可变(mutable)数据类型,则函数内修改了这些参数保存的值,传入的参数也会被修改。 例如,非可变类型不会被修改: function f(n…

    2023年8月14日
    27600
  • 北京大学Julia语言入门讲义第13章: 基本统计功能

    这一部分介绍描述统计、估计、置信区间、假设检验和一些模型。 参考: McNicholas and Tait(2019) Data Science Using Julia, CRC Press. Jose Storopoli, Rik Huijzer, Lazaro Alonso(2022) Julia Data Science. https://cn.jul…

    2023年8月26日
    40000
  • 比特币的肮脏历史为人工智能的未来提供了教训

    人们对人工智能系统的兴趣高涨,将给全球电网带来进一步的压力,有可能与比特币的巨大能源消耗相媲美。值得庆幸的是,首要的加密货币向我们展示了一种减轻影响的方法。 Nvidia 公司上个季度的数据中心收入翻了一番,这表明对 ChatGPT 等生成应用程序的需求尚未达到顶峰。这家美国芯片制造商是这场人工智能淘金热中铲子的主要供应商,但这些处理器既不便宜也不精益。其最…

    2023年8月28日
    15000
  • 北京大学金融时间序列分析讲义第19章: 改进的GARCH模型

    本章讲GARCH模型的一些有针对性的改进。来自(Tsay 2013)§4.9-4.11内容。 EGARCH模型 模型 (Nelson 1991)提出的指数GARCH(EGARCH)模型允许正负资产收益率对波动率有不对称的影响。考虑如下变换 g(εt)=αεt+γ[|εt|−E|εt|],(19.1) 其中α和γ是实常数。{εt}和{|εt|−E|εt|}都分…

    2023年8月1日
    21000
  • 巨变:霍华德马克思谈关于轻松赚钱的终结

    金融市场正在经历一场巨变,标志着央行长期宽松货币政策的结束,超低利率短期内回归的希望渺茫,传奇投资人 霍华德.马克思(Howard Marks)在与 玛格丽特“玛格”富兰克林(CFA 协会总裁兼首席执行官),在上个月的资产和风险分配会议上。 马克斯认为,这代表着金融市场新时代的开始,这将迫使许多投资者重新思考他们如何进行投资,使用不同的风险/回报假设,并适应…

    2023年6月14日
    21300
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部