北京大学金融时间序列分析讲义第21章: 其它的波动率计算方法

本章内容来自自(Tsay 2013)§4.15和§4.16内容。

(French, Schwert, and Stambaugh 1987)用高频数据计算低频收益率的波动率,
又可参见(Andersen et al. 2001)和(Andersen et al. 2001)。

假设我们对某资产的月波动率感兴趣,
有该资产的日收益率数据,
rmt是该资产第t个月的对数收益率,
t个月共有n个交易日,
所有日对数收益率为{rt,i}ni=1

rmt=∑i=1nrt,i.

设各收益率序列的条件方差存在,
Ft−1为截止到t−1个月为止的信息,则

Var(rmt|Ft−1)=∑i=1nVar(rt,i|Ft−1)+2∑i<jCov(rt,i,rt,j|Ft−1).(21.1)

上述公式依赖于t, i以及复杂的方差结构。
{rt,i}是独立同分布零均值白噪声列,
则这时rt,iFt−1独立,
Cov(rt,i,rt,j|Ft−1)=Cov(rt,i,rt,j)=0,
Var(rt,i|Ft−1)=Var(rt,i)=Var(rt,1)
所以这时

Var(rmt|Ft−1)=nVar(rt,1)(21.2)

其中Var(rt,1)可以从样本估计为

σ̂ 2=1n−1∑i=1n(rt,i−r¯t)2,r¯t=1n∑i=1nrt,i.

于是Var(rmt|Ft−1)的估计为

σ̂ 2m=nn−1∑i=1n(rt,i−r¯t)2.(21.3)

{rt,i}服从由独立同分布白噪声产生的MA(1)模型,
rt,i,i=2,…,nFt−1独立,
近似有

Var(rmt|Ft−1)≈nVar(rt,2)+2(n−1)Cov(rt,2,rt,3).(21.4)

可估计为

σ̂ 2m=nn−1∑i=1n(rt,i−r¯t)2+2∑i=1n−1(rt,i−r¯t)(rt,i+1−r¯t).(21.5)

这样用高频数据估计低频收益率波动率的方法简单易懂,
但问题也不少:

  • 日收益率的模型未知,使得Var(rt,i|Ft−1)
    Cov(rt,i,rt,j|Ft−1)可能有复杂的结构。
    假设{rt,i}为独立同分布白噪声或者MA可能是不充分的模型。
  • 如果用日数据估计月数据的波动率,
    一个月大约有21个交易日,
    样本量较小,
    使得方差和协方差估计的精度不高。
    估计的精度依赖于{rt,i}的动态结构及其分布,
    如果{rt,i}有较高的超额峰度和较高的序列相关性,
    用(21.3)和(21.5)估计
    Var(rmt|Ft−1)可能是不相合的,
    参见Bai, X., Russell, J. R. 和Tiao, G. C.(2004)的未发表论文。

用日价格估计月波动率的R函数参见21.3。
函数vold2m不计算第一个月的波动率。
这实际上是将第一个月的日数据计算波动率后作为第二个月的波动率。

21.1.1 用日频数据估计标普500月对数收益率

用高频方法估计标普500的月对数收益率的波动率,
时间期间为1980年1月到2010年8月,
使用日频数据估计。

考虑三种方法的比较:

  • 利用日频数据,假定日数据是独立同分布白噪声;
  • 利用日频数据,假定日数据是MA(1);
  • 利用月度数据,应用高斯GARCH(1,1)模型估计。
da <- read_table(
  "d-sp58010.txt", col_types=cols(.default=col_double()))
xts.sp5d <- xts(
  da[,-(1:3)], 
  make_date(da[["Year"]], da[["Mon"]], da[["Day"]]))

利用蔡瑞胸教授的R函数计算月对数收益率的波动率,
假定日对数收益率为独立同分布白噪声列:

mod1 <- vold2m(da[,c("Year", "Mon", "Day", "Adjclose")])
v1 <- mod1$volatility

结果为包含volatilityndays的列表。

利用蔡瑞胸教授的R函数计算月对数收益率的波动率,
假定日对数收益率为新息独立同分布的MA(1)序列:

#mod2 <- vold2m(da[,c("Mon", "Day", "Year", "Adjclose")], ma=1)
mod2 <- vold2m(da[, c("Year", "Mon", "Day", "Adjclose")], ma=1)
v2 <- mod2$volatility

读入标普500指数月度OHLC数据,从1967年1月到2010年9月:

da2 <- read_table(
  "m-sp56710.txt", col_types=cols(.default=col_double()))
xts.sp5m <- xts(
  da[,-(1:3)], 
  make_date(da[["Year"]], da[["Mon"]], da[["Day"]]))
sp5 <- diff(log(da2[["Adjclose"]]))

对月度数据建立GARCH模型:

library(fGarch, quietly = TRUE)
mod3 <- garchFit( ~ 1 + garch(1,1), data=sp5, trace=FALSE)
## Warning: Using formula(x) is deprecated when x is a character vector of length > 1.
##   Consider formula(paste(x, collapse = " ")) instead.
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~1 + garch(1, 1), data = sp5, trace = FALSE) 
## 
## Mean and Variance Equation:
##  data ~ 1 + garch(1, 1)
## <environment: 0x0000000026c26850>
##  [data = sp5]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##         mu       omega      alpha1       beta1  
## 5.3471e-03  9.3263e-05  1.1422e-01  8.4864e-01  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##         Estimate  Std. Error  t value Pr(>|t|)    
## mu     5.347e-03   1.742e-03    3.069 0.002149 ** 
## omega  9.326e-05   4.859e-05    1.919 0.054942 .  
## alpha1 1.142e-01   3.003e-02    3.804 0.000142 ***
## beta1  8.486e-01   3.186e-02   26.634  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  899.7817    normalized:  1.717141 
## 
## Description:
##  Thu May 12 09:23:20 2022 by user: Lenovo 
## 
## 
## Standardised Residuals Tests:
##                                 Statistic p-Value     
##  Jarque-Bera Test   R    Chi^2  172.5211  0           
##  Shapiro-Wilk Test  R    W      0.9690782 4.639274e-09
##  Ljung-Box Test     R    Q(10)  11.17329  0.3441774   
##  Ljung-Box Test     R    Q(15)  15.451    0.4194449   
##  Ljung-Box Test     R    Q(20)  17.56469  0.61606     
##  Ljung-Box Test     R^2  Q(10)  5.466795  0.8578981   
##  Ljung-Box Test     R^2  Q(15)  7.031543  0.9567685   
##  Ljung-Box Test     R^2  Q(20)  8.200425  0.9904566   
##  LM Arch Test       R    TR^2   5.62988   0.9335791   
## 
## Information Criterion Statistics:
##       AIC       BIC       SIC      HQIC 
## -3.419014 -3.386484 -3.419129 -3.406275
v3 <- window(ts(volatility(mod3), start=c(1967, 2), frequency=12),
             start=c(1980,2), end=c(2010,8))

从GARCH拟合结果看出了高斯分布假设不成立以外模型是充分的。
拟合的模型为

rmt=σ2t=0.0053+at,at=σtεt,εt∼N(0,1)0.00009326+0.1142a2t−1+0.8486σ2t−1

下面比较三种方法估计的波动率:

plot(v1, xlab="Year", ylab="Volatility", 
     main="Using Daily Price WN Assumption",
     ylim=c(0, 0.3))
标普500月波动率用假定白噪声日频数据估计

图21.1: 标普500月波动率用假定白噪声日频数据估计

plot(v2, xlab="Year", ylab="Volatility", 
     main="Using Daily Price MA(1) Assumption",
     ylim=c(0, 0.3))
标普500月波动率用假定MA(1)日频数据估计

图21.2: 标普500月波动率用假定MA(1)日频数据估计

plot(v3, xlab="Year", ylab="Volatility", 
     main="Using Monthly Price GARCH(1,1)",
     ylim=c(0, 0.3))
标普500月波动率用GARCH模型估计

图21.3: 标普500月波动率用GARCH模型估计

可以看出日频数据估计的波动率厚尾更为严重。
将估计的三个波动率序列画在同一坐标系中:

plot(c(time(v1)), c(v1), type="l", xlab="Year", 
     ylab="Volatility", 
     main="Comparing 3 volatility series",
     ylim=c(0, 0.3),
     col="blue")
lines(c(time(v1)), c(v2), col="cyan")
lines(c(time(v1)), c(v3), col="black")
legend("top", lty=1, col=c("blue", "cyan", "black"),
       legend=c("日频白噪声假定", "日频MA(1)假定", "月频GARCH(1,1)估计"))
标普500用三种方法估计的月波动率

图21.4: 标普500用三种方法估计的月波动率

从图21.4看,日频数据结果仅在很高的时候比月频结果高很多,
一般情况下估计结果大小近似;
估计的走势基本一致。

比较三种方法得到的月波动率分布密度:

den1 <- density(c(v1), from=0.01, to=0.29)
den2 <- density(c(v2), from=0.01, to=0.29)
den3 <- density(c(v3), from=0.01, to=0.29)
plot(den1, xlab="Volatility", ylab="Density",
     main="Comparing 3 volatility densities",
     ylim=c(0, 40), 
     col="blue")
lines(den2, col="cyan")
lines(den3, col="black")
legend("topright", lty=1, col=c("blue", "cyan", "black"),
       legend=c("日频白噪声假定", "日频MA(1)假定", "月频GARCH(1,1)估计"))
标普500用三种方法估计的月波动率分布密度

图21.5: 标普500用三种方法估计的月波动率分布密度

从图21.5可以看出日频估计的波动率更为厚尾,
月频数据估计的结果分布比较集中。
取值除了少数极端值以外,
取值范围差别不大。

21.2 使用OHLC数据

许多资产都有OHLC数据,
可以用这样的数据辅助估计波动率。

OHLC数据形成

图21.6: OHLC数据形成

对于一项资产,定义如下变量:

  • Ot: 第t个交易日的开盘价的对数值;
  • Ht: 第t个交易日的最高价的对数值;
  • Lt: 第t个交易日的最低价的对数值;
  • Ct: 第t个交易日的收盘价的对数值;
  • f:一个自然日中闭市时间长度的比例,是一个[0,1]之间的数;
  • Ft−1: 表示截止到t−1个交易日的所有公开信息,
    但数学上应该是参与建模的所有可观测变量截止到t−1交易日的变量的σ代数。

当价格为对数价格时,
日对数收益率条件方差或波动率为
σ2t=E[(Ct−Ct−1)2|Ft−1]
(假定对数收益率均值为0)。

(Garman and Klass 1980)考虑了σ2t的多种估计,
论文假定价格服从一个不带漂移的扩散过程,
可比较的估计有

σ̂ 20t=σ̂ 21t=σ̂ 22t=σ̂ 23t=σ̂ 25t=σ̂ 26t=(Ct−Ct−1)2,(Ot−Ct−1)22f+(Ct−Ot)22(1−f),(Ht−Lt)24ln2≈0.3607(Ht−Lt)2,0.17(Ot−Ct−1)2f+0.83(Ht−Lt)2(1−f)4ln2,0.5(Ht−Lt)2−(2ln2−1)(Ct−Ot)2≈0.5(Ht−Lt)2−0.386(Ct−Ot)2,0.15(Ot−Ct−1)2f+0.88σ̂ 25t1−f.

其中用到f的都需要0<f<1
论文还考虑了更复杂的σ̂ 24t公式,
但与σ̂ 25t接近。
σ̂ 22t估计方法是(Parkinson 1980)提出的。

定义波动率估计的效率因子为

Eff(σ̂ 2it)=Var(σ̂ 20t)Var(σ̂ 2it).

(Garman and Klass 1980)发现对于价格服从简单扩散模型的情形,
i=1,2,3,5,6Eff(σ̂ 2it)分别为
2, 5.2, 6.2, 7.4和8.4,
σ̂ 26t的估计效率最高。

回到对数收益率。定义

  • ot=Ot−Ct−1为标准化对数开盘价;
  • ut=Ht−Ot为标准化对数最高价;
  • dt=Lt−Ot为标准化对数最低价;
  • ct=Ct−Ot为标准化对数收盘价。

设有n天数据,波动率在这个期间保持恒定,
(Yang and Zhang 2000)提出了如下的波动率稳健估计

σ̂ 2yz=σ̂ 2o+kσ̂ 2c+(1−k)σ̂ 2rs.(21.6)

其中

σ̂ 2o=σ̂ 2c=σ̂ 2rs=k=1n−1∑t=1n(ot−o¯)2,1n−1∑t=1n(ct−c¯)2,1n∑t=1n{ut(ut−ct)+dt(dt−ct)},0.341.34+(n+1)/(n−1).

估计σ̂ 2rs由Rogers和Satchell(1991)提出,
选择k使得σ̂ 2yz的标准误差最小,
σ̂ 2yz是三种估计的线性组合。

因为需要使用n天数据计算,
所以实际计算时选定一个窗宽n
每次向前滚动一天地用窗内的价格数据计算,
得到的σ̂ 2yz作为滚动窗内最后一天的波动率平方的估计。

这些滚动计算的算法都有相位对齐问题,
一般对齐在滚动窗最后一天,
或者最后一天的下一天。
这样估计的结果一般会略有滞后,
因为最合理的对齐日期是在滚动窗的中间位置。

(Alizadeh, Brandt, and Diebold 2002)提出了用第t天的变化范围Ht−Lt估计波动率的方法。
但是实际中股票的价格仅在有交易的时刻被观测到,
所以实际的HtLt可能是未被观测到的,
观测的价格变化范围可能低估了实际变化范围,
从而低估波动率。
对于交易频繁的股票,
这种偏差可以忽略;
交易不够频繁的股票则需要考虑这种偏差的影响。

21.2.1 用OHLC数据估计标普500日对数收益率的波动率

标普500指数的OHLC数据,从1980-01-03到2010-08-31,
共7737个交易日的数据。
估计日对数收益率波动率。

chartSeries(
  xts.sp5d, subset="2010-06/2010-08", 
  type="bars", theme="white", TA=NULL,
  main="SP500 Daily Price",
  major.ticks="months", 
  grid.ticks.on="months")
标普500指数序列日数据在2010年6-8月

图21.7: 标普500指数序列日数据在2010年6-8月

图21.7为标普指数日数据在2010.6到8月的OHLC图形。
竖线条表示范围,
左端的短线表示开盘价,
右端的短线表示收盘价。

使用三种方法估计波动率:

  • 利用Yang-Zhang方法(式(21.6)),
    取滑动窗口,窗宽n=63,约三个月;
  • 利用Yang-Zhang方法但取n=32
    与上一方法比较以查看窗宽选择对估计的影响大小;
  • 为日对数收益率序列建立ARMA-GARCH模型估计波动率。

(Yang and Zhang 2000)式(21.6)估计的R函数,
利用滑动窗口计算,
计算得到的波动率的时刻与窗口最右端对齐:

## 输入x为xts类型的时间序列,bw为滑动窗口宽度
volatility.ohlc.yz <- function(x, bw=63){
  times <- index(x)
  nobs <- length(times)
  stdop <- log(Op(x)) - log(lag(Cl(x)[,1]))
  stdhi <- log(Hi(x)) - log(Op(x))
  stdlo <- log(Lo(x)) - log(Op(x))
  stdcl <- log(Cl(x)[,1]) - log(Op(x))
  k <- 0.34 / (1.34 + (bw+1)/(bw-1))
  
  vo <- numeric(nobs); vo[1:bw] <- NA
  vc <- vo
  vrs <- vo
  vyz <- vo
  
  ## 滑动计算
  for(it in (bw+1):nobs){
    ind <- (it-bw+1):it
    vo[it] <- var(stdop[ind], na.rm=TRUE)
    vc[it] <- var(stdcl[ind], na.rm=TRUE)
    vrs[it] <- 1/bw*sum(stdhi[ind]*(stdhi[ind] - stdcl[ind]) +
                          stdlo[ind]*(stdlo[ind] - stdcl[ind]))
  }
  vyz <- vo + k*vc + (1-k)*vrs
  
  xts(cbind(Volatility=c(sqrt(vyz))), times)
}

利用式(21.6)方法,
取滑动窗口,窗口大小n=63,估计波动率:

mod4 <- volatility.ohlc.yz(xts.sp5d, bw=63)

估计的波动率序列:

plot(mod4, type="l", col="red",
     ylim=c(0, 0.07),
     main="Yang-Zhang(BW=63)", 
     major.ticks="years", minor.ticks=NULL, 
     grid.ticks.on="years")
63天滑动计算的波动率

图21.8: 63天滑动计算的波动率

利用式(21.6)方法,
取滑动窗口,窗口大小n=32,估计波动率:

mod5 <- volatility.ohlc.yz(xts.sp5d, bw=32)

估计的波动率序列:

plot(mod5, type="l", col="red",
     ylim=c(0, 0.07),
     main="Yang-Zhang(BW=32)", 
     major.ticks="years", minor.ticks=NULL, 
     grid.ticks.on="years")
32天滑动计算的波动率

图21.9: 32天滑动计算的波动率

下面对日收盘价的对数收益率拟合一个ARMA-GARCH模型,并估计波动率。

library(fGarch, quietly = TRUE)
mod6 <- garchFit(
  ~ 1 + arma(4,0) + garch(1,1), 
  data=diff(log(coredata(xts.sp5d)[,"Close",drop=TRUE])),
  trace=FALSE)
## Warning: Using formula(x) is deprecated when x is a character vector of length > 1.
##   Consider formula(paste(x, collapse = " ")) instead.
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~1 + arma(4, 0) + garch(1, 1), data = diff(log(coredata(xts.sp5d)[, 
##     "Close", drop = TRUE])), trace = FALSE) 
## 
## Mean and Variance Equation:
##  data ~ 1 + arma(4, 0) + garch(1, 1)
## <environment: 0x00000000291ec9d0>
##  [data = diff(log(coredata(xts.sp5d)[, "Close", drop = TRUE]))]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##          mu          ar1          ar2          ar3          ar4        omega  
##  5.5450e-04   1.4467e-02  -1.1101e-02  -2.2045e-02  -3.3974e-02   1.2481e-06  
##      alpha1        beta1  
##  7.5577e-02   9.1579e-01  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##          Estimate  Std. Error  t value Pr(>|t|)    
## mu      5.545e-04   9.545e-05    5.810 6.26e-09 ***
## ar1     1.447e-02   1.218e-02    1.187  0.23510    
## ar2    -1.110e-02   1.204e-02   -0.922  0.35655    
## ar3    -2.205e-02   1.200e-02   -1.836  0.06629 .  
## ar4    -3.397e-02   1.200e-02   -2.830  0.00465 ** 
## omega   1.248e-06   2.036e-07    6.131 8.74e-10 ***
## alpha1  7.558e-02   5.628e-03   13.428  < 2e-16 ***
## beta1   9.158e-01   6.294e-03  145.511  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  25058.57    normalized:  3.239216 
## 
## Description:
##  Thu May 12 09:23:25 2022 by user: Lenovo 
## 
## 
## Standardised Residuals Tests:
##                                 Statistic p-Value  
##  Jarque-Bera Test   R    Chi^2  7046.432  0        
##  Shapiro-Wilk Test  R    W      NA        NA       
##  Ljung-Box Test     R    Q(10)  8.763907  0.5546468
##  Ljung-Box Test     R    Q(15)  20.32417  0.1598465
##  Ljung-Box Test     R    Q(20)  23.14705  0.2816321
##  Ljung-Box Test     R^2  Q(10)  3.647533  0.96185  
##  Ljung-Box Test     R^2  Q(15)  5.38237   0.988364 
##  Ljung-Box Test     R^2  Q(20)  8.517023  0.9878564
##  LM Arch Test       R    TR^2   4.441796  0.9740825
## 
## Information Criterion Statistics:
##       AIC       BIC       SIC      HQIC 
## -6.476364 -6.469173 -6.476366 -6.473898

估计的模型为

rt=at=σ2t=0.00055+0.0145rt−1−0.0111rt−2−0.0221rt−3−0.0340rt−4+at,σtεt,εt∼N(0,1)1.248×10−6+0.0756a2t−1+0.9158σ2t−1

除了高斯分布假定外模型是充分的。
估计的波动率序列图:

plot(
  xts(volatility(mod6), index(xts.sp5d)[-1]),
  type="l", col="red",
  ylim=c(0, 0.07),
  main="ARMA-GARCH Volatility Estimate of BP500", 
  major.ticks="years", minor.ticks=NULL, 
  grid.ticks.on="years"
)
ARMA-GARCH得到的SP500日波动率

图21.10: ARMA-GARCH得到的SP500日波动率

将三种方法得到的波动率画在同一坐标系中比较:

plot(index(xts.sp5d[-1]), c(coredata(mod4))[-1], 
     type="l", xlab="Year", 
     ylab="Volatility", 
     main="Comparing 3 volatility series",
     ylim=c(0, 0.07),
     col="blue")
lines(index(xts.sp5d[-1]), c(coredata(mod5))[-1], 
      col="cyan")
lines(index(xts.sp5d[-1]), c(volatility(mod6)), 
      col="black")
legend("top", lty=1, col=c("blue", "cyan", "black"),
       legend=c("Yang-Zhang BW=63", "Yang-Zhang BW=32", "ARMA-GARCH"))
标普500用三种方法估计的日波动率

图21.11: 标普500用三种方法估计的日波动率

从图21.11看出,
三种方法估计的波动率在非极端值时比较接近,
ARMA-GARCH估计的极端值更大,
Yang-Zhang方法窗口宽度63和32的结果基本没有差别。

21.3 附录:用日数据估计月波动率的R函数

"vold2m" <- function(da, ma=0){
  # Compute the monthly volatility from daily prices
  # ma = 0: Assume no serial correlations in the daily returns
  # ma = 1: Assume one-lag of serial correlation in the daily returns
  # da: T-by-4 data matrix in the format [Year, Month, Day, Price]
  #
  if(!is.matrix(da)) da = as.matrix(da)
  T = nrow(da)
  pr = log(da[,4])
  rtn = c(NA, diff(pr))
  ## 不同年月个数
  nmonths <- length(unique(da[-1,1]*100 + da[-1,2]))
  vol = numeric(nmonths-1)
  cnt <- numeric(nmonths-1)
  
  ## x保存当前月份的收益率
  x <- numeric(31)
  id <- 0
  im <- 0
  pmon = da[2,2]
  first <- TRUE
  for (t in 2:T){
    if(da[t,2] == pmon){
      id <- id + 1
      x[id] <- rtn[t]
    } else { # new month
      if(first){
        firstmon <- c(da[t, 1:2])
        first <- FALSE
      }
      im <- im + 1
      n <- id
      v1 = n * var(x[1:n])
      v2 = 0
      if(ma==1) v2 = cov1(x[1:n])
      v1 = v1 + v2
      vol[im] <- sqrt(v1)
      cnt[im] <- n
      
      id <- 1
      x[1] <- rtn[t]
      pmon = da[t,2]
    }
  } # for t

  vold2m <- list(
    volatility = ts(vol, start=firstmon, frequency=12), 
    ndays=cnt)
}

## 计算滞后1的中心化叉积2倍
"cov1" <- function(x){
  x[] <- x[] - mean(x)
  n <- length(x)
  2 * sum(x[1:(n-1)] * x[2:n])
}

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/74615.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年8月3日 00:10
下一篇 2023年8月4日 00:03

相关推荐

  • 摩根士丹利的威尔逊表示,英伟达市场反应表明美国反弹已经结束

    摩根士丹利(Morgan Stanley)的迈克尔·威尔逊(Michael Wilson)表示,尽管英伟达公司(Nvidia Corp.)发布了丰厚的报告,显示今年的涨势已“耗尽”,并预示着未来还会有更多跌幅,但美国股市周四仍下跌。 这位看跌策略师最近承认自己对 2023 年的前景过于悲观,他表示,更广泛的市场对这家美国芯片制造商井喷预测的反应是市场见顶的完…

    2023年8月28日
    13100
  • 指数基金是最好的投资方式吗?

    投资者越来越多地用钱包投票,指数共同基金和交易所交易基金(ETF)显然是赢家。这些基金不会试图选择最好(或避免最差)的股票和债券,或者进入/退出股票和债券市场的最佳时机。相反,他们购买并持有整组股票或债券,只有在它们消失时才出售它们(通过破产、违约或外国公司收购)。指数基金有几个明显的优势:低成本(这样你就可以保留更多的回报)、税收效率和广泛的多元化。 与传…

    2023年11月24日
    7700
  • 投资新兴世界秩序第3部分

    作者: Inbok Song、Sherwood Zhang、 Vivek Tanneer 在我们全球供应链系列的最后一部分中,投资组合经理 Inbok Song 和 Sherwood 张 着眼于正在重新配置其网络的公司,投资组合经理 Vivek Tanneeru 给出了他对投资机会的评估。 要点 在高价值和低价值市场中,出于不同的原因,公司正在以多种方式彻底…

    2023年9月13日
    8600
  • 三明治一代的规划

    目前,近十分之三的美国成年人家中有 18 岁以下的孩子,12% 的人还为年迈的老人提供无偿护理。多代护理人员被称为“三层三明治”,平均每天提供超过 2.5 小时的无薪护理。这些护理人员中近四分之三的年龄在 40 岁至 59 岁之间,这个时期他们需要增加个人财富来为退休提供资金。 由于大学学费和长期护理设施拉扯着他们的钱包,他们很容易感到陷入困境。为亲人做出决…

    2023年8月18日
    13000
  • EAM:人工智能驱动的主动管理将如何以及为何主导被动管理

    本文源自《Ensemble Active Management——AI对主动管理的变革》及《图灵科技2024年Ensemble Active Management的方法论、设计和数据完整性验证研究》白皮书。 大量研究评估了主动型美国股票管理人超越指数基金和交易所交易基金 (ETF) 的能力。虽然时间范围各不相同,但结果往往趋于一致:主动型管理人超越标准基准的…

    2024年4月20日
    3700

发表回复

登录后才能评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部