北京大学金融时间序列分析讲义第20章: 随机波动率模型

本章内容来自自(Tsay 2013)§4.13和§4.14内容。

前面的波动率方程中σ2t=Var(at|Ft−1)都是被σt−1,…
at−1,…完全决定。
另一种方法是假定σ2t的模型本身有新息,
这样的模型称为随机波动率(Stochastic Volatility, SV)模型。
模型写成

at=σtεt,(1−α1B−⋯−αmBm)lnσ2t=α0+vt.

其中σ2t取对数是为了取消系数必须为非负的限制。
{εt}独立同标准正态分布,
{vt}独立同N(0,σ2v)分布,
{εt}{vt}相互独立。
αi为常数,
特征多项式1−α1z−⋯−αmzm根都在单位圆外。
ξt=lnσ2t
{ξt}是一个严平稳AR(m)序列。

加入vt新息后,
收益率rt的一个新息at就包含了εtvt两个新息,
这增加了模型的自由度,
但是使得从rt数据估计模型参数变得更加困难,
需要使用Kalman滤波或者随机模拟方法计算拟似然估计。

m=1时,有

lnσ2t∼Ea2t=Ea4t=ρ(a2t,a2t−i)=N(α01−α1,σ2v1−α21)=N(μh,σ2h),exp(μh+12σ2h),3exp(2μ2h+2σ2h),eσ2hαi1−13eσ2h−1.

SV模型经常在拟合上有所改善,
但是波动率的样本外预测时好时坏。

20.2 长记忆随机波动率模型

对资产收益率的实证分析发现,
收益率本身没有长记忆性,
但是其平方序列或者绝对值序列的ACF往往衰减很慢。
前面GARCH类模型的建模中σ2t−1的系数很接近于1,
也提示有长记忆。

下面对1962年到2003年标普500指数和IBM股票的日对数收益率序列的绝对值作ACF,
可以看到长记忆现象存在。

da <- read_table(
  "d-ibmvwewsp5-6203.txt",
  col_types=cols(.default=col_double(),
                 date=col_date(format="%Y%m%d")))
xts.ibm <- xts(log(1 + da[,-1]), da[["date"]])
ibm <- coredata(xts.ibm)[,"ibm"]
sp5 <- coredata(xts.ibm)[,"sp5"]

标普500指数日对数收益率绝对值的ACF:

np <- 200; nt <- length(sp5)
tmpa <- acf(abs(sp5), lag.max=np, main="", plot=FALSE)
plot(seq(np), tmpa$acf[2:(np+1)], type="h", xlab="Lag", ylab="acf", ylim=c(-0.05, 0.3))
abline(h=c(2,-2)/sqrt(nt), lty=2, col="blue")
标普500指数日对数收益率绝对值的ACF

图20.1: 标普500指数日对数收益率绝对值的ACF

IBM股票日对数收益率绝对值的ACF:

np <- 200; nt <- length(sp5)
tmpa <- acf(abs(ibm), lag.max=np, main="", plot=FALSE)
plot(seq(np), tmpa$acf[2:(np+1)], type="h", xlab="Lag", ylab="acf", ylim=c(-0.05, 0.3))
abline(h=c(2,-2)/sqrt(nt), lty=2, col="blue")
IBM股票日对数收益率绝对值的ACF

图20.2: IBM股票日对数收益率绝对值的ACF

简单的长记忆随机波动率(LMSV)模型可以写成

at=σtεt,σt=σe12ut,(1−B)dut=ηt.

其中σ>0
{εt}{ηt}是两个相互独立的独立同分布高斯白噪声列,
εt∼N(0,1),
ηt∼N(0,σ2η),
0<d<0.5
长记忆来源于分数差分(1−B)d
这使得ut的ACF以负幂速度衰减而非负指数速度衰减。

对LMSV有

lna2t===ln(σ2tε2t)=lnσ2+ut+lnε2t(lnσ2+Elnε2t)+ut+(lnε2t−Elnε2t)μ+ut+et.

其中ut是一个长记忆的平稳高斯时间序列,
et是一个非高斯的独立同分布白噪声列。

LMSV估计比较复杂,
分数参数d可以用拟最大似然估计法或者回归方法估计。
标普500指数成份股日收益率平方的对数序列的d估计的中位数是0.38。
同一行业的股票的长记忆成分往往相同。

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/74609.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年8月2日 00:16
下一篇 2023年8月2日 23:45

相关推荐

  • 罗素指数重新平衡让选股者头疼不已

    今年 FTSE Russell 股票指数的年度再平衡,当公司被添加或踢出股票指标时,将是活跃的投资组合经理头疼的问题。 根据 Wells Fargo & Co. 的数据,重组将使大型罗素 1000 指数(股票代码 RIY)中前 10 大公司的集中度提高到 29% 的历史高位。 大多数活跃的经理人,他们已经在努力跟上广泛股票基准中由大型股驱动的收益的步…

    2023年6月18日
    16800
  • 淹没在私募股权池中,私募股权绩效归因的困境

    私募市场总体表现计算中最令人惊讶的是什么? 私人市场投资者、顾问、狂热者、批评者甚至学者对数学错误、严重不准确和代表性普遍存在“容忍”。 在传统资产类别中,投资专业人士在归因分析中高度关注每一“微米”的绩效差异。然而,对于私人市场资产来说,过度近似是当今的惯例。 私募股权绩效归因的困境 现金流的可变性使得私募市场资产的业绩归因更具挑战性:回报不是由稳定的基础…

    2023年8月29日
    22600
  • 北京大学Julia语言入门第19章: Julia统计图形–Plots库

    介绍 Julia语言没有内建作图能力,作图需要通过扩展包提供,因为Julia语言的历史还比较短,现在有多种作图用的扩展包但是没有一个占绝对优势的包。比较常用的有Plots, Makie, Gadfly, PyPlot包。其中Makie出现较晚,功能比较强大,后端安装容易。 本文演示Plots包。参见: https://docs.juliaplots.org/…

    2023年9月1日
    51000
  • 以太币可能已准备好开始史诗般的运行

    作者:Tom Lydon 在加密货币方面,一些投资者对采用买入并持有的方式感到谨慎是合理的。即使涉及资产类别中最大的成员比特币和以太坊。 众所周知,加密货币是一个不稳定的领域。对于不能或根本不想积极监控头寸的市场参与者来说,这可能会令人不安。尽管数字货币经常出现动荡,但长期持有才能获得最佳收益。对于以太坊来说,情况可能就是如此——按市值计算,以太坊是仅次于比…

    2023年10月24日
    15300
  • 质量:真正的货色

    质量:真正的货色 格雷戈里·迈耶(GMO)的金姆·迈耶,11 月 6 日,2024 年  执行摘要 在 GMO,我们过去四十年来一直采取长期视角进行股票投资。随着时间的推移,我们的研究中涌现出了一组独特且可靠的杰出公司。在市场周期和市场失衡中,高质量的股票证明了一组卓越企业的稳定性,这些企业非常适合资本增值。尽管股票风格时兴时衰,高质量的公司仍继续作为核心持…

    2024年11月28日
    8100

发表回复

登录后才能评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部