北京大学金融时间序列分析讲义第20章: 随机波动率模型

本章内容来自自(Tsay 2013)§4.13和§4.14内容。

前面的波动率方程中σ2t=Var(at|Ft−1)都是被σt−1,…
at−1,…完全决定。
另一种方法是假定σ2t的模型本身有新息,
这样的模型称为随机波动率(Stochastic Volatility, SV)模型。
模型写成

at=σtεt,(1−α1B−⋯−αmBm)lnσ2t=α0+vt.

其中σ2t取对数是为了取消系数必须为非负的限制。
{εt}独立同标准正态分布,
{vt}独立同N(0,σ2v)分布,
{εt}{vt}相互独立。
αi为常数,
特征多项式1−α1z−⋯−αmzm根都在单位圆外。
ξt=lnσ2t
{ξt}是一个严平稳AR(m)序列。

加入vt新息后,
收益率rt的一个新息at就包含了εtvt两个新息,
这增加了模型的自由度,
但是使得从rt数据估计模型参数变得更加困难,
需要使用Kalman滤波或者随机模拟方法计算拟似然估计。

m=1时,有

lnσ2t∼Ea2t=Ea4t=ρ(a2t,a2t−i)=N(α01−α1,σ2v1−α21)=N(μh,σ2h),exp(μh+12σ2h),3exp(2μ2h+2σ2h),eσ2hαi1−13eσ2h−1.

SV模型经常在拟合上有所改善,
但是波动率的样本外预测时好时坏。

20.2 长记忆随机波动率模型

对资产收益率的实证分析发现,
收益率本身没有长记忆性,
但是其平方序列或者绝对值序列的ACF往往衰减很慢。
前面GARCH类模型的建模中σ2t−1的系数很接近于1,
也提示有长记忆。

下面对1962年到2003年标普500指数和IBM股票的日对数收益率序列的绝对值作ACF,
可以看到长记忆现象存在。

da <- read_table(
  "d-ibmvwewsp5-6203.txt",
  col_types=cols(.default=col_double(),
                 date=col_date(format="%Y%m%d")))
xts.ibm <- xts(log(1 + da[,-1]), da[["date"]])
ibm <- coredata(xts.ibm)[,"ibm"]
sp5 <- coredata(xts.ibm)[,"sp5"]

标普500指数日对数收益率绝对值的ACF:

np <- 200; nt <- length(sp5)
tmpa <- acf(abs(sp5), lag.max=np, main="", plot=FALSE)
plot(seq(np), tmpa$acf[2:(np+1)], type="h", xlab="Lag", ylab="acf", ylim=c(-0.05, 0.3))
abline(h=c(2,-2)/sqrt(nt), lty=2, col="blue")
标普500指数日对数收益率绝对值的ACF

图20.1: 标普500指数日对数收益率绝对值的ACF

IBM股票日对数收益率绝对值的ACF:

np <- 200; nt <- length(sp5)
tmpa <- acf(abs(ibm), lag.max=np, main="", plot=FALSE)
plot(seq(np), tmpa$acf[2:(np+1)], type="h", xlab="Lag", ylab="acf", ylim=c(-0.05, 0.3))
abline(h=c(2,-2)/sqrt(nt), lty=2, col="blue")
IBM股票日对数收益率绝对值的ACF

图20.2: IBM股票日对数收益率绝对值的ACF

简单的长记忆随机波动率(LMSV)模型可以写成

at=σtεt,σt=σe12ut,(1−B)dut=ηt.

其中σ>0
{εt}{ηt}是两个相互独立的独立同分布高斯白噪声列,
εt∼N(0,1),
ηt∼N(0,σ2η),
0<d<0.5
长记忆来源于分数差分(1−B)d
这使得ut的ACF以负幂速度衰减而非负指数速度衰减。

对LMSV有

lna2t===ln(σ2tε2t)=lnσ2+ut+lnε2t(lnσ2+Elnε2t)+ut+(lnε2t−Elnε2t)μ+ut+et.

其中ut是一个长记忆的平稳高斯时间序列,
et是一个非高斯的独立同分布白噪声列。

LMSV估计比较复杂,
分数参数d可以用拟最大似然估计法或者回归方法估计。
标普500指数成份股日收益率平方的对数序列的d估计的中位数是0.38。
同一行业的股票的长记忆成分往往相同。

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/74609.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年8月2日 00:16
下一篇 2023年8月2日 23:45

相关推荐

  • 北京大学金融时间序列分析讲义第9章: 季节模型

    经济和金融中的月度、季度数据一般有明显的周期,日数据也会有按照周、月、年周期的变化。这样的性质称为季节性,含有周期变化的时间序列称为季节时间序列。 如:可口可乐公司1983第1季度到2009第3季度公布的季度盈利数据。每个季度的盈利数据在季度结束后约一个月以后公布。共107个观测。考虑季度盈利的对数值。 da <- read_table( “q-ko-…

    2023年7月20日
    25000
  • 日本股市,一股觉醒的力量

    邓普顿全球股票集团团队表示,从盈利增长的通胀顺风到释放股东价值的企业改革,多种制度转变正在进行中,以恢复日本股市的吸引力。 政权更迭恢复吸引力 过去 30 年来,日本股票一直是被忽视和持有不足的资产类别。日本在 MSCI 世界指数中的权重已从 1987 年的 40% 下降至 6% 左右。根据我们的研究,相对于 MSCI 世界指数,全球投资者对日本的权重仍然偏…

    2023年10月4日
    17300
  • 您的长期护理选择有哪些?

    另一种选择是购买长期护理保险。如果您需要的话,这可以帮助支付长期护理的费用。当然,长期护理保险也不便宜,但如果您担心长期护理的高昂费用,那么它可能是值得投资的。 如何准备长期设施的成本 虽然长期护理的费用可能令人望而生畏,但有多种方法可以帮助抵消费用。一种方法是购买长期护理保险。保险单将涵盖与长期护理服务相关的部分或全部费用。当然,与任何保险单一样,必须支付…

    2023年12月27日
    5000
  • 北京大学R语言教程(李东风)第41章: 统计学习介绍

    统计学习介绍的主要参考书: (James et al. 2013): Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani(2013) An Introduction to Statistical Learning: with Applications in R, Springer. M…

    2023年11月30日
    17600
  • 现代金融的过去、现在与未来

    罗布·阿诺特(Research Affiliates)的,11/11/24  要点 金融领域的革命性变革,与其他学科一样,不仅仅是新数据的出现,而是需要对现有科学知识和探究框架进行全面的重构。 现代投资组合理论(MPT)和其他新古典金融的基石并不总是有实证数据支持。这只会强化它们的变革性本质:利润可以在理论与现实世界之间的差距中找到。 在定量金融中,过度依赖…

    2024年11月28日
    4400

发表回复

登录后才能评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部