北京大学金融时间序列分析讲义第20章: 随机波动率模型

本章内容来自自(Tsay 2013)§4.13和§4.14内容。

前面的波动率方程中σ2t=Var(at|Ft−1)都是被σt−1,…
at−1,…完全决定。
另一种方法是假定σ2t的模型本身有新息,
这样的模型称为随机波动率(Stochastic Volatility, SV)模型。
模型写成

at=σtεt,(1−α1B−⋯−αmBm)lnσ2t=α0+vt.

其中σ2t取对数是为了取消系数必须为非负的限制。
{εt}独立同标准正态分布,
{vt}独立同N(0,σ2v)分布,
{εt}{vt}相互独立。
αi为常数,
特征多项式1−α1z−⋯−αmzm根都在单位圆外。
ξt=lnσ2t
{ξt}是一个严平稳AR(m)序列。

加入vt新息后,
收益率rt的一个新息at就包含了εtvt两个新息,
这增加了模型的自由度,
但是使得从rt数据估计模型参数变得更加困难,
需要使用Kalman滤波或者随机模拟方法计算拟似然估计。

m=1时,有

lnσ2t∼Ea2t=Ea4t=ρ(a2t,a2t−i)=N(α01−α1,σ2v1−α21)=N(μh,σ2h),exp(μh+12σ2h),3exp(2μ2h+2σ2h),eσ2hαi1−13eσ2h−1.

SV模型经常在拟合上有所改善,
但是波动率的样本外预测时好时坏。

20.2 长记忆随机波动率模型

对资产收益率的实证分析发现,
收益率本身没有长记忆性,
但是其平方序列或者绝对值序列的ACF往往衰减很慢。
前面GARCH类模型的建模中σ2t−1的系数很接近于1,
也提示有长记忆。

下面对1962年到2003年标普500指数和IBM股票的日对数收益率序列的绝对值作ACF,
可以看到长记忆现象存在。

da <- read_table(
  "d-ibmvwewsp5-6203.txt",
  col_types=cols(.default=col_double(),
                 date=col_date(format="%Y%m%d")))
xts.ibm <- xts(log(1 + da[,-1]), da[["date"]])
ibm <- coredata(xts.ibm)[,"ibm"]
sp5 <- coredata(xts.ibm)[,"sp5"]

标普500指数日对数收益率绝对值的ACF:

np <- 200; nt <- length(sp5)
tmpa <- acf(abs(sp5), lag.max=np, main="", plot=FALSE)
plot(seq(np), tmpa$acf[2:(np+1)], type="h", xlab="Lag", ylab="acf", ylim=c(-0.05, 0.3))
abline(h=c(2,-2)/sqrt(nt), lty=2, col="blue")
标普500指数日对数收益率绝对值的ACF

图20.1: 标普500指数日对数收益率绝对值的ACF

IBM股票日对数收益率绝对值的ACF:

np <- 200; nt <- length(sp5)
tmpa <- acf(abs(ibm), lag.max=np, main="", plot=FALSE)
plot(seq(np), tmpa$acf[2:(np+1)], type="h", xlab="Lag", ylab="acf", ylim=c(-0.05, 0.3))
abline(h=c(2,-2)/sqrt(nt), lty=2, col="blue")
IBM股票日对数收益率绝对值的ACF

图20.2: IBM股票日对数收益率绝对值的ACF

简单的长记忆随机波动率(LMSV)模型可以写成

at=σtεt,σt=σe12ut,(1−B)dut=ηt.

其中σ>0
{εt}{ηt}是两个相互独立的独立同分布高斯白噪声列,
εt∼N(0,1),
ηt∼N(0,σ2η),
0<d<0.5
长记忆来源于分数差分(1−B)d
这使得ut的ACF以负幂速度衰减而非负指数速度衰减。

对LMSV有

lna2t===ln(σ2tε2t)=lnσ2+ut+lnε2t(lnσ2+Elnε2t)+ut+(lnε2t−Elnε2t)μ+ut+et.

其中ut是一个长记忆的平稳高斯时间序列,
et是一个非高斯的独立同分布白噪声列。

LMSV估计比较复杂,
分数参数d可以用拟最大似然估计法或者回归方法估计。
标普500指数成份股日收益率平方的对数序列的d估计的中位数是0.38。
同一行业的股票的长记忆成分往往相同。

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/74609.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年8月2日 00:16
下一篇 2023年8月2日 23:45

相关推荐

  • 北京大学Julia语言入门讲义第15章: 统计计算

    这一部分介绍如何靠自己编写Julia程序进行定制化的统计计算。从自己编写程序作统计计算的角度简单介绍Julia中与统计计算编程有关的功能,如向量、矩阵计算,最优化,随机模拟,并行计算等。 Julia比较适合用作数值计算,编程既有Python、R、Matlab这样的语言的简洁,又有C++这样的编译语言的运行效率。统计数据分析、作图需要用到许多复杂的算法,有些算…

    2023年8月28日
    45000
  • 随着美联储推迟降息,大型债券陡峭化正在失败

    作者: Liz Capo McCormick、Ye Xie、加菲猫雷诺兹,2/28/24 由于美联储颠覆了降息速度的预测,本应是 2024 年的热门交易已经分崩离析。 进入一月份,市场就积极押注大幅降息。通过这样做,交易员希望从美国国债收益率曲线回归传统的上行斜率(这种转变被称为陡峭化)中获利。这将使长期收益率重新高于短期收益率,反映出随着时间的推移通常需要…

    2024年4月7日
    10300
  • 北京大学R语言教程第48章: R语言的文本处理

    48.1 介绍 在信息爆炸性增长的今天, 大量的信息是文本型的, 如互联网上的大多数资源。 R具有基本的文本数据处理能力, 而且因为R的向量语言特点和强大的统计计算和图形功能, 用R处理文本数据是可行的。 48.2 字符型常量与字符型向量 字符串常量写在两个双撇号或者两个单撇号中间, 建议仅使用双撇号, 因为这是大多数常见程序语言的做法。…

    2023年12月9日
    15300
  • 为什么小盘股投资要主动而非被动

    Equity Insights 提供 Putnam 股票团队关于市场趋势和机遇的研究和观点。 使小盘股引人注目的许多特征也表明了主动型基金经理的价值。各种可能的结果、大量的负收益者以及华尔街的报道显着减少,这些只是小盘股投资者应该考虑可以引导他们取得更好业绩的主动型基金经理的几个原因。 小盘股指数受集中度影响较小 小盘股比大盘股更加平等。正如我们今年所见证的…

    2023年9月26日
    21500
  • 美联储转向的秘密生活

    作者:,Hussman Funds 投机泡沫破灭。我不知道如何让这一点变得更简单,但无论如何还是需要说出来。尽管如此,关注投资者的心理——投机与风险规避——还是有很大帮助的。市场崩盘无非就是低风险溢价遇到避险情绪。事实上,当投资者变得厌恶风险时,他们会将安全的流动性视为一种理想的资产,而不是一种劣等的资产,因此创造更多的资产并不能支撑股市。这就是2000-2…

    2024年1月10日
    5300

发表回复

登录后才能评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部