北京大学金融时间序列分析讲义第20章: 随机波动率模型

本章内容来自自(Tsay 2013)§4.13和§4.14内容。

前面的波动率方程中σ2t=Var(at|Ft−1)都是被σt−1,…
at−1,…完全决定。
另一种方法是假定σ2t的模型本身有新息,
这样的模型称为随机波动率(Stochastic Volatility, SV)模型。
模型写成

at=σtεt,(1−α1B−⋯−αmBm)lnσ2t=α0+vt.

其中σ2t取对数是为了取消系数必须为非负的限制。
{εt}独立同标准正态分布,
{vt}独立同N(0,σ2v)分布,
{εt}{vt}相互独立。
αi为常数,
特征多项式1−α1z−⋯−αmzm根都在单位圆外。
ξt=lnσ2t
{ξt}是一个严平稳AR(m)序列。

加入vt新息后,
收益率rt的一个新息at就包含了εtvt两个新息,
这增加了模型的自由度,
但是使得从rt数据估计模型参数变得更加困难,
需要使用Kalman滤波或者随机模拟方法计算拟似然估计。

m=1时,有

lnσ2t∼Ea2t=Ea4t=ρ(a2t,a2t−i)=N(α01−α1,σ2v1−α21)=N(μh,σ2h),exp(μh+12σ2h),3exp(2μ2h+2σ2h),eσ2hαi1−13eσ2h−1.

SV模型经常在拟合上有所改善,
但是波动率的样本外预测时好时坏。

20.2 长记忆随机波动率模型

对资产收益率的实证分析发现,
收益率本身没有长记忆性,
但是其平方序列或者绝对值序列的ACF往往衰减很慢。
前面GARCH类模型的建模中σ2t−1的系数很接近于1,
也提示有长记忆。

下面对1962年到2003年标普500指数和IBM股票的日对数收益率序列的绝对值作ACF,
可以看到长记忆现象存在。

da <- read_table(
  "d-ibmvwewsp5-6203.txt",
  col_types=cols(.default=col_double(),
                 date=col_date(format="%Y%m%d")))
xts.ibm <- xts(log(1 + da[,-1]), da[["date"]])
ibm <- coredata(xts.ibm)[,"ibm"]
sp5 <- coredata(xts.ibm)[,"sp5"]

标普500指数日对数收益率绝对值的ACF:

np <- 200; nt <- length(sp5)
tmpa <- acf(abs(sp5), lag.max=np, main="", plot=FALSE)
plot(seq(np), tmpa$acf[2:(np+1)], type="h", xlab="Lag", ylab="acf", ylim=c(-0.05, 0.3))
abline(h=c(2,-2)/sqrt(nt), lty=2, col="blue")
标普500指数日对数收益率绝对值的ACF

图20.1: 标普500指数日对数收益率绝对值的ACF

IBM股票日对数收益率绝对值的ACF:

np <- 200; nt <- length(sp5)
tmpa <- acf(abs(ibm), lag.max=np, main="", plot=FALSE)
plot(seq(np), tmpa$acf[2:(np+1)], type="h", xlab="Lag", ylab="acf", ylim=c(-0.05, 0.3))
abline(h=c(2,-2)/sqrt(nt), lty=2, col="blue")
IBM股票日对数收益率绝对值的ACF

图20.2: IBM股票日对数收益率绝对值的ACF

简单的长记忆随机波动率(LMSV)模型可以写成

at=σtεt,σt=σe12ut,(1−B)dut=ηt.

其中σ>0
{εt}{ηt}是两个相互独立的独立同分布高斯白噪声列,
εt∼N(0,1),
ηt∼N(0,σ2η),
0<d<0.5
长记忆来源于分数差分(1−B)d
这使得ut的ACF以负幂速度衰减而非负指数速度衰减。

对LMSV有

lna2t===ln(σ2tε2t)=lnσ2+ut+lnε2t(lnσ2+Elnε2t)+ut+(lnε2t−Elnε2t)μ+ut+et.

其中ut是一个长记忆的平稳高斯时间序列,
et是一个非高斯的独立同分布白噪声列。

LMSV估计比较复杂,
分数参数d可以用拟最大似然估计法或者回归方法估计。
标普500指数成份股日收益率平方的对数序列的d估计的中位数是0.38。
同一行业的股票的长记忆成分往往相同。

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/74609.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年8月2日 00:16
下一篇 2023年8月2日 23:45

相关推荐

  • 美国依然存在经济衰退的可能性,投资组合需要调整吗?

    作者:Erik Ristuben 执行摘要: 我们认为,在投资者开始增持或减持股票之前,必须高度确信经济衰退将会发生。这是因为投资组合定位的变化可能会对投资结果产生重大的负面或正面影响。目前美国经济衰退的概率为 55%,并未达到我们的高信念阈值。 鉴于经济衰退的不确定性,投资者可能还需要考虑其他渐进措施。其中包括调整投资组合的市场贝塔值和信用风险。 与市场风…

    2023年9月23日
    13300
  • 仔细审视全职和兼职就业

    让我们仔细看看最新的全职和兼职就业报告数据。政府就业状况摘要表 A-9底部附近隐藏着全职和兼职工人的数字,两类人之间的任意划分为 35 小时或以上。来源是每月的家庭当前人口调查(CPS)。重点是总工作时间,无论这些时间是来自单个工作还是多个工作。 劳工部自 1968 年以来一直在收集这一数据,当时只有 13.5% 的美国雇员是兼职人员。这一数字在 2010 …

    2023年12月29日
    5100
  • 项目融资:谨防利率误算

    利率就像天气。我们可以为典型的波动做好准备,但突然的变化仍然会让我们措手不及。例如,在全球金融危机 (GFC) 之后,我们享受了十年的晴朗天空和低利率。尽管2019年风势强劲,经济因联邦基金利率上升而举步维艰,但风很快就消散了,零利率回归。 但在过去的两年里,利率的下降相当于一场猛烈的风暴。为了对抗通胀,美联储以前所未有的速度加息,联邦基金利率触及22年来的…

    2023年9月25日
    12900
  • 北京大学R语言教程(李东风)第51章:数据库访问

    51.1 介绍 对于大型的数据, 或者保存在多个表中的复杂数据, 经常会保存在一个数据库中。 数据库可以存在于专用的数据库服务器硬件上, 也可以是本机中的一个系统程序, 或者R直接管理的一个文件。 比较通用的数据库是关系数据库, 这样的数据库已经有很标准的设计理念和管理方法, 从用户使用的角度来看, 都可以使用一种专用的SQL语言来访问和管理。 常…

    2023年12月14日
    14000
  • 北京大学金融时间序列分析讲义第26章: 格兰格因果性

    介绍 前面已经在VAR部分简单介绍了格兰格因果性的概念,以及用VAR模型检验格兰格因果性的方法。这里对格兰格因果性的概念与检验方法进行更详细的阐述。这一章的内容主要参考(Gebhard Kirchgässner 2013),(C. W. J. Granger 1969)。 考虑两个时间序列之间的因果性。这里的因果性指的是时间顺序上的关系,如果Xt−1,Xt−…

    2023年8月8日
    22700

发表回复

登录后才能评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部