比特币的肮脏历史为人工智能的未来提供了教训

人们对人工智能系统的兴趣高涨,将给全球电网带来进一步的压力,有可能与比特币的巨大能源消耗相媲美。值得庆幸的是,首要的加密货币向我们展示了一种减轻影响的方法。

Nvidia 公司上个季度的数据中心收入翻了一番,这表明对 ChatGPT 等生成应用程序的需求尚未达到顶峰。这家美国芯片制造商是这场人工智能淘金热中铲子的主要供应商,但这些处理器既不便宜也不精益。其最新旗舰产品 GH200 Grace Hopper Superchip 仅有明信片大小,功耗高达 1,000 瓦,相当于一个便携式加热器。

尽管大多数客户会选择不如超级芯片那么奇特的东西,但他们确实会批量购买它们以连接到一个大型人工智能服务器,这就是对电力的真正需求。去年发表的一项研究着眼于所需的能源消耗训练用于输出多种语言文本的单个大语言模型。

来自初创公司 HuggingFace 的 BLOOM 从 1.6 TB 数据中提取了 1760 亿个参数。该研究的作者表示,由 384 个 Nvidia A100 图形处理器(GPU)组成的集群需要超过 118 天的时间才能完成计算。他们估计,长时间运行如此多的 GPU 所消耗的电力可能会产生 24.7 公吨(54,000 磅)的二氧化碳。但如果考虑到整个系统的网络连接和空闲时间,真实成本会翻倍达到 50.5 吨。

即便如此,训练模型只是一个开始。根据运行自己的 AI 服务器的 Amazon.com Inc. 的一项估计,运行人工智能的 90% 的费用来自下一阶段,即用户查询模型以获得结果,例如向 ChatGPT 询问巧克力蛋糕食谱。执行数据(称为推理)所需的能量消耗很难计算,但据信大约是第一个训练阶段所需能量的 10 倍,这意味着 500 吨二氧化碳。据一项估计,单个生成式人工智能查询的碳足迹可能是谷歌搜索的四倍。

暴力数字运算内置于比特币的设计中,这有助于解释为什么半导体和服务器在世界范围内掀起浪潮,以期开采数字黄金。剑桥大学正在进行的一项研究估计,比特币造成了 7250 万吨二氧化碳。如果所有比特币矿场都依靠水力发电,这个数字可能会低至 300 万吨。1与加密货币的浪费相比,单轮训练和部署所产生的 500 吨二氧化碳似乎不算什么。然而,这仍然相当于驾驶汽油动力汽车行驶 100 万英里,或从纽约飞往法兰克福 500 趟航班。

现在还为时尚早。至少有十几家主要科技公司正在争先恐后地构建和部署生成式人工智能产品,包括亚马逊、Alphabet Inc.、微软公司、OpenAI、Meta Platforms Inc.、百度公司、腾讯控股有限公司和阿里巴巴集团控股有限公司由于他们都在竞相超越对方,因此一旦模型训练完成,他们就不会坐以待毙。他们将继续购买耗电的处理器来分析越来越多的数据。一旦完成,他们将相互竞争,以大学论文、深度伪造视频和平克·弗洛伊德音乐合成版本的形式向消费者提供结果。

雪上加霜的是,目前大多数人工智能训练都是由化石燃料提供动力。这些服务器场已在现有地点迅速扩展,通常距离水力发电大坝或太阳能电池阵列数千英里。由于响应互联网请求时网络延迟是一个问题,因此它们需要靠近最终用户,而不是位于数千英里之外。

但比特币已经为人工智能行业开辟了一条可以效仿的道路。拥有大量可再生能源的寒冷气候成为了开采耗电的加密货币矿场的完美地点,北极的空气和冰岛丰富的热能使该国成为理想的选择。中国也可能为许多吸引采矿设备的水力发电站找到新用途,但在北京打击数字货币后这些水力发电站失去了业务。当然,外国人工智能提供商将无法利用,但中国科技巨头知道,随着电力需求的增加,他们身边就有这样的资源。

在这些服务器场中将比特币换成人工智能还有另一个好处。尽管加密货币吸引了众多投机者和数十亿美元的投资,但它仍然未能为世界增加太多价值。生成式人工智能不存在这个问题;只需询问 ChatGPT 即可。 

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/75855.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年8月28日 23:28
下一篇 2023年8月28日 23:41

相关推荐

  • 为什么目标日期基金会失败?3万亿美元的错觉

    Morningstar 估计,截至 2022 年,目标日期共同基金 (TDF) 投资额接近 3 万亿美元。据晨星报道:目标日期策略仍然是退休储蓄者的首选投资工具。 无论 TDF 中的退休储蓄者是否意识到(我想大多数人都没有意识到),他们都在盲目地投资自己的财富。这些基金中股票和债券之间的分配不基于风险或回报,而仅基于日历。管理 TDF 需要零专业知识,但共同…

    2023年11月21日
    19200
  • 北京大学金融时间序列分析讲义第12章: 模型比较和平均

    在实际金融事件序列数据的建模中,注意不存在所谓“正确的模型”,只能是从多个比较适合的模型中选择最合适的一个,或者将比较适合的多个模型的预测结果进行平均。 为了比较模型,有样本内比较和样本外比较两种方法。 样本内比较 如果建模目的是获得描述数据内在运动规律的参数模型,可以用样本内比较,利用全部数据建模,并比较不同模型的某个优良性指标,如AIC、BIC、新息方差…

    2023年7月22日
    28700
  • 金融时间序列分析讲义:资产波动率模型特征

    李东升著 北京大学金融数学讲义 金融数据中最关心的除了资产价格、收益率,就是资产波动率。资产波动率度量某项资产的风险,有多种定义。本章: 理解波动率特点; 学习ARCH、GARCH等波动率模型; 学习如何对波动率建模,如何应用波动率模型。 波动率是期权定价和资产分配的关键因素。波动率对计算风险管理中的VaR(风险值)有重要作用。一些波动率指数已经成为金融工具…

    2023年7月5日
    36300
  • 弥合基本面与量化的鸿沟

    如今,大多数大型主动基金管理公司都拥有基本面和量化投资团队。从历史上看,这两个群体一直处于不同的孤岛,并且有充分的理由:他们对投资流程有不同的方法,并且使用不同的日常语言。 分歧的根源在于各自的教育基础。基本面投资者研究经济学并学习自下而上的投资过程,旨在确定单一股票的未来价值。量化分析师学习数学和工程学,并从大量市场数据开始,采用自上而下的方法进行投资决策…

    2023年8月26日
    18000
  • 千禧一代与金钱:重新定义财务成功之路

    1981 年至 1996 年出生的千禧一代正在改变他们对金钱和财富的看法。作为美国历史上最多元化的一代,他们已成为经济中的一股强大力量,将在 2020 年超越婴儿潮一代,成为美国人数最多的一代。凭借其独特的特征和视角,千禧一代正在重塑传统的金融概念并探索创造财富的新途径。 在金钱方面,优先考虑价值观和生活方式对于千禧一代来说非常重要。他们经常寻求通过财富来表…

    2023年12月15日
    19700

发表回复

登录后才能评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部