比特币的肮脏历史为人工智能的未来提供了教训

人们对人工智能系统的兴趣高涨,将给全球电网带来进一步的压力,有可能与比特币的巨大能源消耗相媲美。值得庆幸的是,首要的加密货币向我们展示了一种减轻影响的方法。

Nvidia 公司上个季度的数据中心收入翻了一番,这表明对 ChatGPT 等生成应用程序的需求尚未达到顶峰。这家美国芯片制造商是这场人工智能淘金热中铲子的主要供应商,但这些处理器既不便宜也不精益。其最新旗舰产品 GH200 Grace Hopper Superchip 仅有明信片大小,功耗高达 1,000 瓦,相当于一个便携式加热器。

尽管大多数客户会选择不如超级芯片那么奇特的东西,但他们确实会批量购买它们以连接到一个大型人工智能服务器,这就是对电力的真正需求。去年发表的一项研究着眼于所需的能源消耗训练用于输出多种语言文本的单个大语言模型。

来自初创公司 HuggingFace 的 BLOOM 从 1.6 TB 数据中提取了 1760 亿个参数。该研究的作者表示,由 384 个 Nvidia A100 图形处理器(GPU)组成的集群需要超过 118 天的时间才能完成计算。他们估计,长时间运行如此多的 GPU 所消耗的电力可能会产生 24.7 公吨(54,000 磅)的二氧化碳。但如果考虑到整个系统的网络连接和空闲时间,真实成本会翻倍达到 50.5 吨。

即便如此,训练模型只是一个开始。根据运行自己的 AI 服务器的 Amazon.com Inc. 的一项估计,运行人工智能的 90% 的费用来自下一阶段,即用户查询模型以获得结果,例如向 ChatGPT 询问巧克力蛋糕食谱。执行数据(称为推理)所需的能量消耗很难计算,但据信大约是第一个训练阶段所需能量的 10 倍,这意味着 500 吨二氧化碳。据一项估计,单个生成式人工智能查询的碳足迹可能是谷歌搜索的四倍。

暴力数字运算内置于比特币的设计中,这有助于解释为什么半导体和服务器在世界范围内掀起浪潮,以期开采数字黄金。剑桥大学正在进行的一项研究估计,比特币造成了 7250 万吨二氧化碳。如果所有比特币矿场都依靠水力发电,这个数字可能会低至 300 万吨。1与加密货币的浪费相比,单轮训练和部署所产生的 500 吨二氧化碳似乎不算什么。然而,这仍然相当于驾驶汽油动力汽车行驶 100 万英里,或从纽约飞往法兰克福 500 趟航班。

现在还为时尚早。至少有十几家主要科技公司正在争先恐后地构建和部署生成式人工智能产品,包括亚马逊、Alphabet Inc.、微软公司、OpenAI、Meta Platforms Inc.、百度公司、腾讯控股有限公司和阿里巴巴集团控股有限公司由于他们都在竞相超越对方,因此一旦模型训练完成,他们就不会坐以待毙。他们将继续购买耗电的处理器来分析越来越多的数据。一旦完成,他们将相互竞争,以大学论文、深度伪造视频和平克·弗洛伊德音乐合成版本的形式向消费者提供结果。

雪上加霜的是,目前大多数人工智能训练都是由化石燃料提供动力。这些服务器场已在现有地点迅速扩展,通常距离水力发电大坝或太阳能电池阵列数千英里。由于响应互联网请求时网络延迟是一个问题,因此它们需要靠近最终用户,而不是位于数千英里之外。

但比特币已经为人工智能行业开辟了一条可以效仿的道路。拥有大量可再生能源的寒冷气候成为了开采耗电的加密货币矿场的完美地点,北极的空气和冰岛丰富的热能使该国成为理想的选择。中国也可能为许多吸引采矿设备的水力发电站找到新用途,但在北京打击数字货币后这些水力发电站失去了业务。当然,外国人工智能提供商将无法利用,但中国科技巨头知道,随着电力需求的增加,他们身边就有这样的资源。

在这些服务器场中将比特币换成人工智能还有另一个好处。尽管加密货币吸引了众多投机者和数十亿美元的投资,但它仍然未能为世界增加太多价值。生成式人工智能不存在这个问题;只需询问 ChatGPT 即可。 

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/75855.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年8月28日 23:28
下一篇 2023年8月28日 23:41

相关推荐

  • 北京大学R语言教程(李东风)第18章: R程序效率

    R是解释型语言,在执行单个运算时,效率与编译代码相近;在执行迭代循环时, 效率较低,与编译代码的速度可能相差几十倍。在循环中对变量进行修改尤其低效,因为R在修改某些数据类型的子集时会复制整个数据对象。R以向量、矩阵为基础运算单元,在进行向量、矩阵运算时效率很高,应尽量采用向量化编程。 另外,R语言的设计为了方便进行数据分析和统计建模,有意地使语言特别灵活,比…

    2023年11月6日
    23100
  • 9月,市场最令人恐惧的月份,可能是一个黄金机会

    作者:Frank Holmes 众所周知,无论时间跨度如何,九月历来对股市来说都是充满挑战的月份。根据 Yardeni Research 的数据,自 1928 年以来,标准普尔 500 指数在 9 月收盘下跌了 52 次,比任何其他月份都要多。从过去30年和5年的月度回报来看,9月份股市表现最差,平均分别下跌0.34%和2.89%。 尽管过去的表现并不能保证…

    2023年9月14日
    27700
  • 金融阶梯攀登:投资专业人士的 PIE 框架

    发布于: Careers, Conference Collections, Drivers of Value, Economics, Future States, Performance Measurement & Evaluation, Philosophy 在我的职业生涯早期,即使我努力工作,也错失了晋升机会。作为受过工程训练的人,我假设我的成功…

    2025年1月8日
    7800
  • 北京大学R语言教程(李东风)第43章:基于树的方法

    43.1 树回归的简单演示 决策树方法按不同自变量的不同值, 分层地把训练集分组。 每层使用一个变量, 所以这样的分组构成一个二叉树表示。 为了预测一个观测的类归属, 找到它所属的组, 用组的类归属或大多数观测的类归属进行预测。 这样的方法称为决策树(decision tree)。 决策树方法既可以用于判别问题, 也可以用于回归问题,称为回归树。 …

    2023年12月2日
    30900
  • 冈拉克:赤字、衰退、失业和迫在眉睫的危机

    联邦赤字已经高达 GDP 的 6%。但如果经济衰退袭来——正如杰弗里·冈拉克担心明年会发生的那样——失业率将会上升,赤字和政府为此支付的利息将削弱经济。 冈拉克通过名为“规范”的网络广播向投资者发表讲话,重点是他的旗舰总回报基金 (DBLTX)。该网络广播中的幻灯片可在此处获取。冈拉克是洛杉矶双线资本的创始人兼董事长。 冈拉克曾经经常光顾圣莫尼卡一家名为 N…

    2023年12月18日
    23200

发表回复

登录后才能评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部