比特币的肮脏历史为人工智能的未来提供了教训

人们对人工智能系统的兴趣高涨,将给全球电网带来进一步的压力,有可能与比特币的巨大能源消耗相媲美。值得庆幸的是,首要的加密货币向我们展示了一种减轻影响的方法。

Nvidia 公司上个季度的数据中心收入翻了一番,这表明对 ChatGPT 等生成应用程序的需求尚未达到顶峰。这家美国芯片制造商是这场人工智能淘金热中铲子的主要供应商,但这些处理器既不便宜也不精益。其最新旗舰产品 GH200 Grace Hopper Superchip 仅有明信片大小,功耗高达 1,000 瓦,相当于一个便携式加热器。

尽管大多数客户会选择不如超级芯片那么奇特的东西,但他们确实会批量购买它们以连接到一个大型人工智能服务器,这就是对电力的真正需求。去年发表的一项研究着眼于所需的能源消耗训练用于输出多种语言文本的单个大语言模型。

来自初创公司 HuggingFace 的 BLOOM 从 1.6 TB 数据中提取了 1760 亿个参数。该研究的作者表示,由 384 个 Nvidia A100 图形处理器(GPU)组成的集群需要超过 118 天的时间才能完成计算。他们估计,长时间运行如此多的 GPU 所消耗的电力可能会产生 24.7 公吨(54,000 磅)的二氧化碳。但如果考虑到整个系统的网络连接和空闲时间,真实成本会翻倍达到 50.5 吨。

即便如此,训练模型只是一个开始。根据运行自己的 AI 服务器的 Amazon.com Inc. 的一项估计,运行人工智能的 90% 的费用来自下一阶段,即用户查询模型以获得结果,例如向 ChatGPT 询问巧克力蛋糕食谱。执行数据(称为推理)所需的能量消耗很难计算,但据信大约是第一个训练阶段所需能量的 10 倍,这意味着 500 吨二氧化碳。据一项估计,单个生成式人工智能查询的碳足迹可能是谷歌搜索的四倍。

暴力数字运算内置于比特币的设计中,这有助于解释为什么半导体和服务器在世界范围内掀起浪潮,以期开采数字黄金。剑桥大学正在进行的一项研究估计,比特币造成了 7250 万吨二氧化碳。如果所有比特币矿场都依靠水力发电,这个数字可能会低至 300 万吨。1与加密货币的浪费相比,单轮训练和部署所产生的 500 吨二氧化碳似乎不算什么。然而,这仍然相当于驾驶汽油动力汽车行驶 100 万英里,或从纽约飞往法兰克福 500 趟航班。

现在还为时尚早。至少有十几家主要科技公司正在争先恐后地构建和部署生成式人工智能产品,包括亚马逊、Alphabet Inc.、微软公司、OpenAI、Meta Platforms Inc.、百度公司、腾讯控股有限公司和阿里巴巴集团控股有限公司由于他们都在竞相超越对方,因此一旦模型训练完成,他们就不会坐以待毙。他们将继续购买耗电的处理器来分析越来越多的数据。一旦完成,他们将相互竞争,以大学论文、深度伪造视频和平克·弗洛伊德音乐合成版本的形式向消费者提供结果。

雪上加霜的是,目前大多数人工智能训练都是由化石燃料提供动力。这些服务器场已在现有地点迅速扩展,通常距离水力发电大坝或太阳能电池阵列数千英里。由于响应互联网请求时网络延迟是一个问题,因此它们需要靠近最终用户,而不是位于数千英里之外。

但比特币已经为人工智能行业开辟了一条可以效仿的道路。拥有大量可再生能源的寒冷气候成为了开采耗电的加密货币矿场的完美地点,北极的空气和冰岛丰富的热能使该国成为理想的选择。中国也可能为许多吸引采矿设备的水力发电站找到新用途,但在北京打击数字货币后这些水力发电站失去了业务。当然,外国人工智能提供商将无法利用,但中国科技巨头知道,随着电力需求的增加,他们身边就有这样的资源。

在这些服务器场中将比特币换成人工智能还有另一个好处。尽管加密货币吸引了众多投机者和数十亿美元的投资,但它仍然未能为世界增加太多价值。生成式人工智能不存在这个问题;只需询问 ChatGPT 即可。 

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/75855.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年8月28日 23:28
下一篇 2023年8月28日 23:41

相关推荐

  • 北京大学Julia语言入门讲义第15章: 统计计算

    这一部分介绍如何靠自己编写Julia程序进行定制化的统计计算。从自己编写程序作统计计算的角度简单介绍Julia中与统计计算编程有关的功能,如向量、矩阵计算,最优化,随机模拟,并行计算等。 Julia比较适合用作数值计算,编程既有Python、R、Matlab这样的语言的简洁,又有C++这样的编译语言的运行效率。统计数据分析、作图需要用到许多复杂的算法,有些算…

    2023年8月28日
    44400
  • 墨西哥制造:近岸外包正在加速增长

    作者:Brian Freiwald Equity Insights 提供 Putnam 股票团队关于市场趋势和机遇的研究和观点。 回流和近岸外包是全球市场投资者的主要趋势。随着地缘政治紧张局势升级以及越来越多的企业将业务从中国转移,投资者正在考虑去全球化的影响。对于许多企业和地区来说,我们相信它可以推动有意义的增长,墨西哥是最大的受益者之一。 我们认为,墨西…

    2023年10月12日
    33200
  • 资产管理中的信任幻象

    如果不彻底改革尽职调查流程,分配者和管理者之间永远不会有真正的信任。 分配者希望与他们信任的资产管理公司进行投资,这些管理公司始终会以他们的最佳利益行事。但充其量,他们得到的只是信任的幻觉。 分配者为确定管理人是否确实值得信赖而进行的尽职调查流程,首先要评估管理人是否拥有合法业务:是否拥有持续行动所必需的员工、运营、治理结构、报告和控制、监管地位以及价值观作…

    2023年8月8日
    18500
  • 更好管理资金的 10 种方法

    ‍‍ 收支平衡只是优秀资金管理的一方面。如果你数学不是最好的也没关系;您真正需要了解的只是基础知识。 ‍ 说实话。当你精通财务时,生活就会简单得多。您的信用评分和最终的债务总额取决于您管理资金的方式。如果您正在努力应对资金管理挑战,例如尽管赚了足够多的钱,但仍过着薪水过日子,这里有一些建议可以帮助您改善财务习惯。 ‍ 当做出财务决策时,永远不要认为自己能买得…

    2023年12月6日
    14800
  • 北京大学金融时间序列分析讲义第28章: 状态空间模型

    上一章的局部水平模型是线性高斯状态空间模型的一个简单特例。本章给出状态空间模型,举例说明这种模型能够表示的其它模型,如ARIMA模型,结构时间序列模型,时变回归模型,有自相关误差的回归模型,随机波动率模型等,并给出滤波、平滑、预报公式和参数估计方法。 参考: (Durbin and Koopman 2012) (Tsay 2010) (Beijers 202…

    2023年8月9日
    55100

发表回复

登录后才能评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部