北京大学R语言教程(李东风)第7章: R向量下标和子集

在R中下标与子集是极为强大的功能,
需要一些练习才能熟练掌握,
许多其它语言中需要多个语句才能完成的工作在R中都可以简单地通过下标和子集来完成。

7.1 正整数下标

对向量x, 在后面加方括号和下标可以访问向量的元素和子集。

x <- c(1, 4, 6.25)
x[2]取出第二个元素;
x[2] <- 99修改第二个元素。
x[c(1,3)]取出第1、3号元素;
x[c(1,3)] <- c(11, 13)修改第1、3号元素。
下标可重复。
例如

x <- c(1, 4, 6.25)
x[2]
## [1] 4
x[2] <- 99; x
## [1]  1.00 99.00  6.25
x[c(1,3)]
## [1] 1.00 6.25
x[c(1,3)] <- c(11, 13); x
## [1] 11 99 13
x[c(1,3,1)]
## [1] 11 13 11

7.2 负整数下标

负下标表示扣除相应的元素后的子集,如

x <- c(1,4,6.25)
x[-2]
## [1] 1.00 6.25
x[-c(1,3)]
## [1] 4

负整数下标不能与正整数下标同时用来从某一向量中取子集,
比如,x[c(1,-2)]没有意义。

7.3 空下标与零下标

x[]表示取x的全部元素作为子集。
这与x本身不同,比如

x <- c(1,4,6.25)
x[] <- 999
x
## [1] 999 999 999
x <- c(1,4,6.25)
x <- 999
x
## [1] 999

x[0]是一种少见的做法,
结果返回类型相同、长度为零的向量,
numeric(0)
相当于空集。

当0与正整数下标一起使用时会被忽略。
当0与负整数下标一起使用时也会被忽略。

7.4 下标超界

设向量x长度为n,
则使用正整数下标时下标应在{1,2,…,n}中取值。
如果使用大于n的下标,
读取时返回缺失值,并不出错。
给超出n的下标元素赋值,
则向量自动变长,
中间没有赋值的元素为缺失值。
例如

x <- c(1,4,6.25)
x[5]
## [1] NA
x
## [1] 1.00 4.00 6.25
x[5] <- 9
x
## [1] 1.00 4.00 6.25   NA 9.00

虽然R的语法对下标超界不视作错误,
但是这样的做法往往来自不良的程序思路,
而且对程序效率有影响,
所以实际编程中应避免下标超界。

7.5 逻辑下标

下标可以是与向量等长的逻辑表达式,
一般是关于本向量或者与本向量等长的其它向量的比较结果,如

x <- c(1,4,6.25)
x[x > 3]
## [1] 4.00 6.25

取出x的大于3的元素组成的子集。

逻辑下标除了用来对向量取子集,
还经常用来对数据框取取子集,
也用在向量化的运算中。
例如,对如下示性函数

f(x)={1,0,x≥0x<0

输入向量x,结果y需要也是一个向量,程序可以写成

f <- function(x){
  y <- numeric(length(x))
  y[x >= 0] <- 1
  y[x < 0] <- 0 # 此语句多余
  
  y
}

事实上,向量化的逻辑选择有一个ifelse()函数,
比如,对上面的示性函数,
如果x是一个向量,
输出y向量可以写成y <- ifelse(x>=0, 1, 0)

要注意的是,如果逻辑下标中有缺失值,
对应结果也是缺失值。
所以,在用逻辑下标作子集选择时,
一定要考虑到缺失值问题。正确的做法是加上!is.na前提,

x <- c(1, 4, 6.25, NA)
x[x > 2]
## [1] 4.00 6.25   NA
x[!is.na(x) & x > 2]
## [1] 4.00 6.25

7.6 which()which.min()which.max()函数

函数which()可以用来找到满足条件的下标,

x <- c(3, 4, 3, 5, 7, 5, 9)
which(x > 5)
## [1] 5 7
seq(along=x)[x > 5]
## [1] 5 7

这里seq(along=x)会生成由x的下标组成的向量。
which.min()which.max求最小值的下标和最大值的下标,
不唯一时只取第一个。如

which.min(x)
## [1] 1
which.max(x)
## [1] 7

7.7 元素名

向量可以为每个元素命名。如

ages <- c("李明"=30, "张聪"=25, "刘颖"=28)

ages <- c(30, 25, 28)
names(ages) <- c("李明", "张聪", "刘颖")

ages <- setNames(c(30, 25, 28), c("李明", "张聪", "刘颖"))

这时可以用元素名或元素名向量作为向量的下标,如

ages["张聪"]
## 张聪 
##   25
ages[c("李明", "刘颖")]
## 李明 刘颖 
##   30   28
ages["张聪"] <- 26

这实际上建立了字符串到数值的映射表。

用字符串作为下标时,
如果该字符串不在向量的元素名中,
读取时返回缺失值结果,
赋值时该向量会增加一个元素并以该字符串为元素名。

带有元素名的向量也可以是字符型或其它基本类型,如

sex <- c("李明"="男", "张聪"="男", "刘颖"="女")

除了给向量元素命名外,
在矩阵和数据框中还可以给行、列命名,
这会使得程序的扩展更为容易和安全。

R允许仅给部分元素命名,
这时其它元素名字为空字符串。
不同元素的元素名一般应该是不同的,
否则在使用元素作为下标时会发生误读,
但是R语法允许存在重名。

unname(x)返回去掉了元素名的x的副本,
names(x) <- NULL可以去掉x的元素名。

7.8 用R向量下标作映射

R在使用整数作为向量下标时,允许使用重复下标,
这样可以把数组x看成一个1:n的整数到
x[1], x[2], , x[n]的一个映射表,
其中nx的长度。
比如,某商店有三种礼品,编号为1,2,3,
价格分别为68, 88和168。令

price_map <- c(68, 88, 168)

设某个收银员在一天内分别售出礼品编号为3,2,1,1,2,2,3,
可以用如下的映射方式获得售出的这些礼品对应的价格:

items <- c(3,2,1,1,2,2,3)
y <- price_map[items]; print(y)
## [1] 168  88  68  68  88  88 168

R向量可以用字符型向量作下标,
字符型下标也允许重复,
所以可以把带有元素名的R向量看成是元素名到元素值的映射表。
比如,设sex为10个学生的性别(男、女)

sex <- c("男", "男", "女", "女", "男", "女", "女", "女", "女", "男")

希望把每个学生按照性别分别对应到蓝色和红色。
首先建立一个R向量当作映射

sex_color <- c("男"="blue", "女"="red")

用R向量sex.color当作映射,可以获得每个学生对应的颜色

cols <- sex_color[sex]; print(cols)
##     男     男     女     女     男     女     女     女     女     男 
## "blue" "blue"  "red"  "red" "blue"  "red"  "red"  "red"  "red" "blue"

这样的映射结果中带有不必要的元素名,
unname()函数可以去掉元素名,如

unname(cols)
##  [1] "blue" "blue" "red"  "red"  "blue" "red"  "red"  "red"  "red"  "blue"

7.9 集合运算

可以把向量x看成一个集合,但是其中的元素允许有重复。
unique(x)可以获得x的所有不同值。如

unique(c(1, 5, 2, 5))
## [1] 1 5 2

a %in% x判断a的每个元素是否属于向量x,如

5 %in% c(1,5,2)
## [1] TRUE
c(5,6) %in% c(1,5,2)
## [1]  TRUE FALSE

%in运算符类似,
函数match(x, table)对向量x的每个元素,
从向量table中查找其首次出现位置并返回这些位置。
没有匹配到的元素位置返回NA_integer_(整数型缺失值)。

match(5, c(1,5,2))
## [1] 2
match(5, c(1,5,2,5))
## [1] 2
match(c(2,5), c(1,5,2,5))
## [1] 3 2
match(c(2,5,0), c(1,5,2,5))
## [1]  3  2 NA

intersect(x,y)求交集,结果中不含重复元素,如

intersect(c(5, 7), c(1, 5, 2, 5))
## [1] 5

union(x,y)求并集,结果中不含重复元素,如

union(c(5, 7), c(1, 5, 2, 5))
## [1] 5 7 1 2

setdiff(x,y)求差集,即x的元素中不属于y的元素组成的集合,
结果中不含重复元素,如

setdiff(c(5, 7), c(1, 5, 2, 5))
## [1] 7

setequal(x,y)判断两个集合是否相等,
不受次序与重复元素的影响,如

setequal(c(1,5,2), c(2,5,1))
## [1] TRUE
setequal(c(1,5,2), c(2,5,1,5))
## [1] TRUE

7.10 练习

设文件class.csv内容如下:

name,sex,age,height,weight
Alice,F,13,56.5,84
Becka,F,13,65.3,98
Gail,F,14,64.3,90
Karen,F,12,56.3,77
Kathy,F,12,59.8,84.5
Mary,F,15,66.5,112
Sandy,F,11,51.3,50.5
Sharon,F,15,62.5,112.5
Tammy,F,14,62.8,102.5
Alfred,M,14,69,112.5
Duke,M,14,63.5,102.5
Guido,M,15,67,133
James,M,12,57.3,83
Jeffrey,M,13,62.5,84
John,M,12,59,99.5
Philip,M,16,72,150
Robert,M,12,64.8,128
Thomas,M,11,57.5,85
William,M,15,66.5,112

用如下程序可以把上述文件读入为R数据框d.class,
并取出其中的name和age列到变量name和age中:

d.class <- read.csv("class.csv", header=TRUE, stringsAsFactors=FALSE)
name <- d.class[,"name"]
age <- d.class[,"age"]
  1. 求出age中第3, 5, 7号的值;
  2. 用变量age, 求出达到15岁及以上的那些值;
  3. 用变量name和age, 求出Mary与James的年龄。
  4. 求age中除Mary与James这两人之外的那些人的年龄值,保存到变量age1中。
  5. 假设向量x长度为n, 其元素是{1,2,…,n}的一个重排。
    可以把x看成一个i到x[i]的映射(i在{1,2,…,n}中取值)。
    求向量y, 保存了上述映射的逆映射,即:
    如果x[i]=j, 则y[j]=i。

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/77745.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年10月26日 00:37
下一篇 2023年10月27日 01:06

相关推荐

  • 什么是 DRIP 投资策略?

    股息再投资计划,通常称为 DRIP,是一种投资策略,允许投资者在股息支付日将其现金股息再投资为基础证券的额外股份或部分股份。用外行的话来解释这种“再投资机制”,它非常类似于滚雪球下山——雪球(你的投资)随着它不断滚动(再投资)而变得更大(增长)。您可能需要向专业财务顾问寻求建议,看看这对您来说是否是一个好的策略。 DRIP的主要吸引力在于股息的自动再投资。当…

    2023年9月7日
    36700
  • 摩根士丹利的威尔逊表示,英伟达市场反应表明美国反弹已经结束

    摩根士丹利(Morgan Stanley)的迈克尔·威尔逊(Michael Wilson)表示,尽管英伟达公司(Nvidia Corp.)发布了丰厚的报告,显示今年的涨势已“耗尽”,并预示着未来还会有更多跌幅,但美国股市周四仍下跌。 这位看跌策略师最近承认自己对 2023 年的前景过于悲观,他表示,更广泛的市场对这家美国芯片制造商井喷预测的反应是市场见顶的完…

    2023年8月28日
    20400
  • 这些行业在 2023 年下半年脱颖而出

    作者:Nick Peters-Golden 根据 VettaFi 最近的股票研讨会的民意调查显示,能源和信息技术是投资者最关心的两个行业。 在由 VettaFi 副主席 Tom Lydon 主持的“当今市场格局的战略行业分配”小组会议上,观众对他们认为今年剩余时间里最有吸引力的行业进行了民意调查。绝大多数受访者选择了能源(42%),信息技术紧随其后(21%)…

    2023年10月4日
    16300
  • 你应该购买比特币吗?触及 40,000 美元后您需要了解的一切

    比特币今年涨幅超过 140%,超过了股票和黄金等其他投资,人们对进一步上涨的乐观情绪很高。 它的出色表现是在该代币经历了一段动荡时期之后出现的。去年加密货币暴跌后,FTX 创始人 Sam Bankman-Fried 因欺诈罪入狱,而顶级交易所币安及其创始人赵长鹏最近承认违反美国反洗钱和制裁规定,并被处以 4.3 美元罚款分别为 10 亿美元和 5000 万美…

    2023年12月11日
    11800
  • 美股迷失在通胀数据中

    通货膨胀是一个敏感的话题,鉴于分析它的方法有很多,投资者应该注意数据中存在的细微差别。 很难找到比通货膨胀更能抓住大流行后世界时代精神的主题了。出于正当理由,关于价格上涨的讨论无处不在——无论是美联储官员制定货币政策、消费者在商店和加油站面临压力,还是企业提高工人的收入。工资。 然而今年,围绕通​​胀的话题明显发生了变化。与一年前相比,价格上涨的步伐大幅放缓…

    2023年12月20日
    16200

发表回复

登录后才能评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部