在金融数据科学中使用具有经济意义的因素的好处

因素选择是我们构建财务模型时最重要的考虑因素之一。那么,随着机器学习 (ML) 和数据科学越来越融入金融,我们应该为 ML 驱动的投资模型选择哪些因素以及如何选择它们?

这些都是开放且关键的问题。毕竟,机器学习模型不仅可以帮助因子处理,还可以帮助因子发现和创建。

传统统计和机器学习模型中的因素:(非常)基础知识

机器学习中的因素选择称为“特征选择”。因素和特征有助于解释目标变量的行为,而投资因素模型则描述投资组合行为的主要驱动因素。

也许多因素模型构建方法中最简单的是普通最小二乘(OLS)回归,其中投资组合回报是因变量,风险因素是自变量。只要自变量具有足够低的相关性,不同的模型将在统计上有效,并在不同程度上解释投资组合的行为,揭示相关模型对投资组合行为的百分比以及投资组合的回报对每个变量的敏感程度因子的行为由每个因子附加的 beta 系数表示。

与传统的统计模型一样,机器学习回归模型也描述变量对一个或多个解释变量的敏感性。然而,与非 ML 模型相比,ML 模型通常可以更好地解释非线性行为和交互效应,并且它们通常不提供 OLS 回归输出的直接模拟,例如 beta 系数。

为什么因素应该具有经济意义

尽管合成因素很受欢迎,但经济上直观且经过经验验证的因素比此类“统计”因素具有优势,尽管高频交易(HFT)和其他特殊情况除外。作为研究人员,我们大多数人都喜欢最简单的模型。因此,我们通常从 OLS 回归或类似的东西开始,获得令人信服的结果,然后可能转向更复杂的 ML 模型。

但在传统回归中,因素必须足够不同,或者不是高度相关,以避免多重共线性问题,而多重共线性问题可能会导致传统回归不合格。多重共线性意味着模型的一个或多个解释因素过于相似而无法提供可理解的结果。因此,在传统的回归中,较低的因素相关性(避免多重共线性)意味着这些因素在经济上可能是不同的。

但多重共线性通常并不像 OLS 回归那样适用于 ML 模型构建。这是因为与 OLS 回归模型不同,ML 模型估计不需要协方差矩阵的逆。此外,机器学习模型没有严格的参数假设,也不依赖同方差(误差独立性)或其他时间序列假设。

然而,虽然机器学习模型相对无规则,但可能需要大量的模型前工作来确保给定模型的输入既具有投资相关性又具有经济一致性,并且足够独特以产生实际结果而无需任何解释性冗余。

尽管因子选择对于任何因子模型都至关重要,但在使用基于机器学习的方法时尤其重要。在预模型阶段选择不同但经济直观的因素的一种方法是采用最小绝对收缩和选择算子(LASSO)技术。这使模型构建者能够将大量因素提炼成较小的因素集,同时提供相当大的解释力和因素之间的最大独立性。

部署具有经济意义的因素的另一个根本原因是:它们有数十年的研究和实证验证来支持。例如,Fama-French – Carhart 因子的实用性已有详细记录,研究人员已经在 OLS 回归和其他模型中研究了它们。因此,它们在机器学习驱动模型中的应用是直观的。事实上,在也许是第一篇将机器学习应用于股权因子的研究论文中,吴晨威、Daniel Itano、Vyshaal Narayana 和我证明了 Fama-French-Carhart 因子与两个著名的机器学习框架(随机森林和关联)相结合规则学习——确实可以帮助解释资产回报并塑造成功的投资交易模型。

最后,通过部署具有经济意义的因素,我们可以更好地理解某些类型的机器学习输出。例如,随机森林和其他机器学习模型提供所谓的相对特征重要性值。这些分数和排名描述了模型中每个因素相对于其他因素提供的解释力有多大。当模型的各个因素之间的经济关系被清晰地描述出来时,这些值就更容易掌握。

结论

机器学习模型的吸引力很大程度上取决于其相对无规则的性质以及它们如何很好地适应不同的输入和启发式方法。尽管如此,一些道路规则应该指导我们如何应用这些模型。通过依靠具有经济意义的因素,我们可以使机器学习驱动的投资框架更易于理解,并确保只有最完整和最具指导意义的模型才能为我们的投资流程提供信息。

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/76259.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年9月14日 01:12
下一篇 2023年9月15日 00:03

相关推荐

  • 强劲就业和零售数据之后,还会衰退吗?

    最近经济学家对经济将避免衰退越来越有信心。这是由于强劲的就业和零售销售数据。就连杰罗姆·鲍威尔(Jerome Powell)在最近的讲话中也提到了这些数据的实力。以机智: “更多证据表明经济增长持续高于趋势水平,或者劳动力市场的紧张状况不再缓解,可能会导致通胀进一步恶化,并可能导致货币政策进一步收紧。无论如何,通胀仍然过高,几个月的良好数据只是建立通胀持续下…

    2023年12月4日
    39500
  • 因子倾斜的系统框架

    作者:安德鲁·昂 (Andrew Ang),2024 年 1 月 20 日 要点 因子是投资组合风险和回报的长期驱动因素。对因子进行战略性配置可能会增加投资组合的预期回报。 由于因子表现具有周期性,投资者或许能够通过系统地偏向因子来推动投资组合的额外阿尔法。 向任何因子倾斜的决策都可能受到当前经济体制、估值和情绪的影响。 你们中的一些人可能熟悉我在演讲和《资…

    2024年2月29日
    15700
  • 北京大学R语言教程(李东风)第2章:R语言入门运行样例

    启动R软件后进入命令行界面,每输入一行命令,就在后面显示计算结果。可以用向上和向下箭头访问历史命令;可以从已经运行过的命令中用鼠标拖选加亮后,用Ctrl+C复制后用Ctrl+V粘贴(这是MS Windows下的快捷键组合),粘贴的目标是当前命令行。 如果使用RStudio软件,有一个“Console窗格”相当于命令行界面。在RStudio中,可以用New F…

    2023年10月20日
    64300
  • 如何摆脱对信用卡的依赖

    如何摆脱对信用卡的依赖 作者:JesseCampbell2024 年 3 月 26 日 多年来,美国各地的信用卡债务一直在攀升。截至 2023 年底,美国消费者信用卡债务总额超过 1 万亿美元,每张卡的平均余额约为 6,500 美元。 并非所有信用卡购物都是坏事,仅仅使用信用卡也没什么问题。但是,如果经济负担沉重的消费者依赖信用卡购买食品和汽油等必需品,这种…

    2024年5月21日
    8600
  • 北京大学R语言教程(李东风)第15章: R输入输出

    输入输出的简单方法 简单的输出 用print()函数显示某个变量或表达式的值,如 x <- 1.234 print(x) ## [1] 1.234 y <- c(1,3,5) print(y[2:3]) ## [1] 3 5 在命令行使用R时,直接以变量名或表达式作为命令可以起到用print()函数显示的相同效果。 用cat()函数把字符串、变量…

    2023年11月3日
    40600

发表回复

登录后才能评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部