在金融数据科学中使用具有经济意义的因素的好处

因素选择是我们构建财务模型时最重要的考虑因素之一。那么,随着机器学习 (ML) 和数据科学越来越融入金融,我们应该为 ML 驱动的投资模型选择哪些因素以及如何选择它们?

这些都是开放且关键的问题。毕竟,机器学习模型不仅可以帮助因子处理,还可以帮助因子发现和创建。

传统统计和机器学习模型中的因素:(非常)基础知识

机器学习中的因素选择称为“特征选择”。因素和特征有助于解释目标变量的行为,而投资因素模型则描述投资组合行为的主要驱动因素。

也许多因素模型构建方法中最简单的是普通最小二乘(OLS)回归,其中投资组合回报是因变量,风险因素是自变量。只要自变量具有足够低的相关性,不同的模型将在统计上有效,并在不同程度上解释投资组合的行为,揭示相关模型对投资组合行为的百分比以及投资组合的回报对每个变量的敏感程度因子的行为由每个因子附加的 beta 系数表示。

与传统的统计模型一样,机器学习回归模型也描述变量对一个或多个解释变量的敏感性。然而,与非 ML 模型相比,ML 模型通常可以更好地解释非线性行为和交互效应,并且它们通常不提供 OLS 回归输出的直接模拟,例如 beta 系数。

为什么因素应该具有经济意义

尽管合成因素很受欢迎,但经济上直观且经过经验验证的因素比此类“统计”因素具有优势,尽管高频交易(HFT)和其他特殊情况除外。作为研究人员,我们大多数人都喜欢最简单的模型。因此,我们通常从 OLS 回归或类似的东西开始,获得令人信服的结果,然后可能转向更复杂的 ML 模型。

但在传统回归中,因素必须足够不同,或者不是高度相关,以避免多重共线性问题,而多重共线性问题可能会导致传统回归不合格。多重共线性意味着模型的一个或多个解释因素过于相似而无法提供可理解的结果。因此,在传统的回归中,较低的因素相关性(避免多重共线性)意味着这些因素在经济上可能是不同的。

但多重共线性通常并不像 OLS 回归那样适用于 ML 模型构建。这是因为与 OLS 回归模型不同,ML 模型估计不需要协方差矩阵的逆。此外,机器学习模型没有严格的参数假设,也不依赖同方差(误差独立性)或其他时间序列假设。

然而,虽然机器学习模型相对无规则,但可能需要大量的模型前工作来确保给定模型的输入既具有投资相关性又具有经济一致性,并且足够独特以产生实际结果而无需任何解释性冗余。

尽管因子选择对于任何因子模型都至关重要,但在使用基于机器学习的方法时尤其重要。在预模型阶段选择不同但经济直观的因素的一种方法是采用最小绝对收缩和选择算子(LASSO)技术。这使模型构建者能够将大量因素提炼成较小的因素集,同时提供相当大的解释力和因素之间的最大独立性。

部署具有经济意义的因素的另一个根本原因是:它们有数十年的研究和实证验证来支持。例如,Fama-French – Carhart 因子的实用性已有详细记录,研究人员已经在 OLS 回归和其他模型中研究了它们。因此,它们在机器学习驱动模型中的应用是直观的。事实上,在也许是第一篇将机器学习应用于股权因子的研究论文中,吴晨威、Daniel Itano、Vyshaal Narayana 和我证明了 Fama-French-Carhart 因子与两个著名的机器学习框架(随机森林和关联)相结合规则学习——确实可以帮助解释资产回报并塑造成功的投资交易模型。

最后,通过部署具有经济意义的因素,我们可以更好地理解某些类型的机器学习输出。例如,随机森林和其他机器学习模型提供所谓的相对特征重要性值。这些分数和排名描述了模型中每个因素相对于其他因素提供的解释力有多大。当模型的各个因素之间的经济关系被清晰地描述出来时,这些值就更容易掌握。

结论

机器学习模型的吸引力很大程度上取决于其相对无规则的性质以及它们如何很好地适应不同的输入和启发式方法。尽管如此,一些道路规则应该指导我们如何应用这些模型。通过依靠具有经济意义的因素,我们可以使机器学习驱动的投资框架更易于理解,并确保只有最完整和最具指导意义的模型才能为我们的投资流程提供信息。

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/76259.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年9月14日 01:12
下一篇 2023年9月15日 00:03

相关推荐

  • 当您的投资组合 100% 投资于股票,美股市场如何分散风险

    有读者问: 我今年34岁,风险承受能力较高。我所有的投资账户都是100%投资股票的。当我进行研究时,我很难找到一个经过验证的真实答案,那就是如何在大盘股、中盘股、国际市场、新兴市场等之间最好地分配我的股票投资。我不希望得到本身可能的最高回报(尽管那很好),相反,我希望拥有一个多元化的投资组合,让我能够接触股票市场的各个方面,以便我的长期回报率为 7%-10 …

    2023年7月24日
    12500
  • 北京大学金融时间序列分析讲义第13章:线性时间序列案例学习—汽油价格

    这一章用三个实例来详细讲解如何用R语言和线性时间序列模型分析实际数据,并展现线性时间序列模型的适用性与局限性。 数据为: 1997-01-06到2010-09-27的美国普通汽油价格周数据; 1880年1月到2010年8月全球温度异常值的月度数据; 美国失业率月度数据,包括首次申领失业救济金人数的序列以及不包括的序列。 这些数据是持续更新的,也反映了全球或美…

    2023年7月24日
    19900
  • 震荡中前行

    A股的箱体震荡格局依然没有改变,有点像是摇煤球,把大家都晃晕了。刚刚燃起的希望的希望,又很快的落下去了。下一次再反弹的时候,相信那些砖家的打脸言论会少很多,因为他们的脸已经肿了。 最近的震荡其实也有一些趋势,振幅越来越窄,从拉升到回归的时间越来越短。这样给之前通过期权来操作的人也带来了一些难度。 这样的行情特别考验一个投资者的心态,其实到了这样的行情反而大家…

    2023年8月15日
    14500
  • 现有规则影响了对长期趋势的认知

    作者:Brian McAuley 尽管美联储将利率提高至 22 年来的最高水平,但经济仍然出人意料地保持弹性,预计第三季度增长将轻松超过 2% 的趋势。这是导致一些经济学家质疑利率是否会回到 2020 年之前较低水平的因素之一,即使通胀在未来几年回到美联储 2% 的目标…… ~《华尔街日报》,2023 年 8 月 20 日 长期或长期…

    2023年10月17日
    6900
  • 北京大学R语言教程(李东风)第31章: 使用infer包进行统计推断

    R的infer扩展包提供了与tidyverse系统习惯做法一致的进行假设检验的方法。 在进行理论推断时, 主要使用随机模拟方法进行计算, 也支持基于理论分布的方法。 这个包的当前版本(1.2.9001)还有一些错误, 不能用于较正式的研究问题。 以数据框(tibble)为输入, 用动词specify指定针对的变量, 用hypothesis指定假设检验(包括置…

    2023年11月21日
    27100

发表回复

登录后才能评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部