在金融数据科学中使用具有经济意义的因素的好处

因素选择是我们构建财务模型时最重要的考虑因素之一。那么,随着机器学习 (ML) 和数据科学越来越融入金融,我们应该为 ML 驱动的投资模型选择哪些因素以及如何选择它们?

这些都是开放且关键的问题。毕竟,机器学习模型不仅可以帮助因子处理,还可以帮助因子发现和创建。

传统统计和机器学习模型中的因素:(非常)基础知识

机器学习中的因素选择称为“特征选择”。因素和特征有助于解释目标变量的行为,而投资因素模型则描述投资组合行为的主要驱动因素。

也许多因素模型构建方法中最简单的是普通最小二乘(OLS)回归,其中投资组合回报是因变量,风险因素是自变量。只要自变量具有足够低的相关性,不同的模型将在统计上有效,并在不同程度上解释投资组合的行为,揭示相关模型对投资组合行为的百分比以及投资组合的回报对每个变量的敏感程度因子的行为由每个因子附加的 beta 系数表示。

与传统的统计模型一样,机器学习回归模型也描述变量对一个或多个解释变量的敏感性。然而,与非 ML 模型相比,ML 模型通常可以更好地解释非线性行为和交互效应,并且它们通常不提供 OLS 回归输出的直接模拟,例如 beta 系数。

为什么因素应该具有经济意义

尽管合成因素很受欢迎,但经济上直观且经过经验验证的因素比此类“统计”因素具有优势,尽管高频交易(HFT)和其他特殊情况除外。作为研究人员,我们大多数人都喜欢最简单的模型。因此,我们通常从 OLS 回归或类似的东西开始,获得令人信服的结果,然后可能转向更复杂的 ML 模型。

但在传统回归中,因素必须足够不同,或者不是高度相关,以避免多重共线性问题,而多重共线性问题可能会导致传统回归不合格。多重共线性意味着模型的一个或多个解释因素过于相似而无法提供可理解的结果。因此,在传统的回归中,较低的因素相关性(避免多重共线性)意味着这些因素在经济上可能是不同的。

但多重共线性通常并不像 OLS 回归那样适用于 ML 模型构建。这是因为与 OLS 回归模型不同,ML 模型估计不需要协方差矩阵的逆。此外,机器学习模型没有严格的参数假设,也不依赖同方差(误差独立性)或其他时间序列假设。

然而,虽然机器学习模型相对无规则,但可能需要大量的模型前工作来确保给定模型的输入既具有投资相关性又具有经济一致性,并且足够独特以产生实际结果而无需任何解释性冗余。

尽管因子选择对于任何因子模型都至关重要,但在使用基于机器学习的方法时尤其重要。在预模型阶段选择不同但经济直观的因素的一种方法是采用最小绝对收缩和选择算子(LASSO)技术。这使模型构建者能够将大量因素提炼成较小的因素集,同时提供相当大的解释力和因素之间的最大独立性。

部署具有经济意义的因素的另一个根本原因是:它们有数十年的研究和实证验证来支持。例如,Fama-French – Carhart 因子的实用性已有详细记录,研究人员已经在 OLS 回归和其他模型中研究了它们。因此,它们在机器学习驱动模型中的应用是直观的。事实上,在也许是第一篇将机器学习应用于股权因子的研究论文中,吴晨威、Daniel Itano、Vyshaal Narayana 和我证明了 Fama-French-Carhart 因子与两个著名的机器学习框架(随机森林和关联)相结合规则学习——确实可以帮助解释资产回报并塑造成功的投资交易模型。

最后,通过部署具有经济意义的因素,我们可以更好地理解某些类型的机器学习输出。例如,随机森林和其他机器学习模型提供所谓的相对特征重要性值。这些分数和排名描述了模型中每个因素相对于其他因素提供的解释力有多大。当模型的各个因素之间的经济关系被清晰地描述出来时,这些值就更容易掌握。

结论

机器学习模型的吸引力很大程度上取决于其相对无规则的性质以及它们如何很好地适应不同的输入和启发式方法。尽管如此,一些道路规则应该指导我们如何应用这些模型。通过依靠具有经济意义的因素,我们可以使机器学习驱动的投资框架更易于理解,并确保只有最完整和最具指导意义的模型才能为我们的投资流程提供信息。

韭菜热线原创版权所有,发布者:风生水起,转载请注明出处:https://www.9crx.com/76259.html

(0)
打赏
风生水起的头像风生水起普通用户
上一篇 2023年9月14日 01:12
下一篇 2023年9月15日 00:03

相关推荐

  • 200 亿美元俱乐部:更高的利率意味着……更高的回报假设?

    执行摘要: 美国最大上市养老金计划发起人的平均预期资产回报率 (EROA) 假设将在 2023 年增至 6.70%,这是 19 年有记录以来首次出现同比增长。 此前,美国用于损益表的 EROA 假设仅因以下两个因素而同比下降:数据库投资组合中负债对冲固定收益的增加以及由于利率下降而导致固定收益预期回报率的下降。 2023 年 EROA 假设的增加是大型养老金…

    2024年3月20日
    14700
  • 北京大学R语言教程(李东风)第14章: 工作空间和变量赋值

    工作空间 R把在命令行定义的变量都保存到工作空间中,在退出R时可以选择是否保存工作空间。这也是R与其他如C、Java这样的语言的区别之一。 用ls()命令可以查看工作空间中的内容。 随着多次在命令行使用R,工作空间的变量越来越多,使得重名的可能性越来越大,而且工作空间中变量太多也让我们不容易查看其内容。在命令行定义的变量称为“全局变量”,在编程实践中,全局变…

    2023年11月2日
    28000
  • 北京大学R语言教程(李东风)第18章: R程序效率

    R是解释型语言,在执行单个运算时,效率与编译代码相近;在执行迭代循环时, 效率较低,与编译代码的速度可能相差几十倍。在循环中对变量进行修改尤其低效,因为R在修改某些数据类型的子集时会复制整个数据对象。R以向量、矩阵为基础运算单元,在进行向量、矩阵运算时效率很高,应尽量采用向量化编程。 另外,R语言的设计为了方便进行数据分析和统计建模,有意地使语言特别灵活,比…

    2023年11月6日
    20900
  • 公平转型和新兴市场:权衡风险

    理解气候转型带来的社会风险需要纪律、细致入微和系统性的方法。 负责任的投资者对各国从化石燃料转向替代能源所面临的社会风险的经济后果感到担忧,他们越来越认同“公平转型”的概念。这些风险在新兴市场 (EM) 中尤其高。投资者如何系统地衡量这些风险? 简而言之,公平转型意味着从化石燃料转型时要考虑到经济影响,而不是破坏经济的社会结构。 转型管理不善的后果可能对煤炭…

    2024年5月16日
    12000
  • 6 种投资风格:哪种适合您?

    你知道自己的投资风格是什么吗?如果您像大多数投资者一样,您可能没有考虑太多。然而,对主要投资风格有基本的了解是了解当今市场上数千种投资的最快方法之一。 主要投资风格可分为三个维度:主动管理与被动管理、成长投资与价值投资、小盘股与大盘股公司。浏览每一项并评估您的偏好将使您快速了解哪些投资风格适合您的个性。 主动或被动管理 在确定投资风格时,投资者首先应考虑他们…

    2023年8月21日
    23700

发表回复

登录后才能评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部